2025-02-23T03:46:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-152190%22&qt=morelikethis&rows=5
2025-02-23T03:46:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-152190%22&qt=morelikethis&rows=5
2025-02-23T03:46:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:46:14-05:00 DEBUG: Deserialized SOLR response
Partitions of groups into sparse subsets
A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset F ⊂ X, such that ∩x∈FxA is finite. We denote by η(G) the minimal cardinal such that G can be partitioned in η(G) sparse subsets. If |G| > (κ+)א0 then η(G) > κ, if |G| ≤ κ+ then η(G) ≤ κ....
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2012
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/152190 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-152190 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1521902019-06-09T01:25:00Z Partitions of groups into sparse subsets Protasov, I. A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset F ⊂ X, such that ∩x∈FxA is finite. We denote by η(G) the minimal cardinal such that G can be partitioned in η(G) sparse subsets. If |G| > (κ+)א0 then η(G) > κ, if |G| ≤ κ+ then η(G) ≤ κ. We show also that cov(A) ≥ cf|G| for each sparse subset A of an infinite group G, where cov(A) = min{|X| : G = X A}. 2012 Article Partitions of groups into sparse subsets / I. Protasov // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 107–110. — Бібліогр.: 7 назв. — англ. 1726-3255 2010 Mathematics Subject Classification: 03E75, 20F99, 20K99. http://dspace.nbuv.gov.ua/handle/123456789/152190 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset F ⊂ X, such that ∩x∈FxA is finite. We denote by η(G) the minimal cardinal such that G can be partitioned in η(G) sparse subsets. If |G| > (κ+)א0 then η(G) > κ, if |G| ≤ κ+ then η(G) ≤ κ. We show also that cov(A) ≥ cf|G| for each sparse subset A of an infinite group G, where cov(A) = min{|X| : G = X A}. |
format |
Article |
author |
Protasov, I. |
spellingShingle |
Protasov, I. Partitions of groups into sparse subsets Algebra and Discrete Mathematics |
author_facet |
Protasov, I. |
author_sort |
Protasov, I. |
title |
Partitions of groups into sparse subsets |
title_short |
Partitions of groups into sparse subsets |
title_full |
Partitions of groups into sparse subsets |
title_fullStr |
Partitions of groups into sparse subsets |
title_full_unstemmed |
Partitions of groups into sparse subsets |
title_sort |
partitions of groups into sparse subsets |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152190 |
citation_txt |
Partitions of groups into sparse subsets / I. Protasov // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 107–110. — Бібліогр.: 7 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT protasovi partitionsofgroupsintosparsesubsets |
first_indexed |
2023-05-20T17:37:41Z |
last_indexed |
2023-05-20T17:37:41Z |
_version_ |
1796153724380381184 |