Partitions of groups into sparse subsets

A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset F ⊂ X, such that ∩x∈FxA is finite. We denote by η(G) the minimal cardinal such that G can be partitioned in η(G) sparse subsets. If |G| > (κ+)א0 then η(G) > κ, if |G| ≤ κ+ then η(G) ≤ κ....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Protasov, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152190
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Partitions of groups into sparse subsets / I. Protasov // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 107–110. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152190
record_format dspace
spelling irk-123456789-1521902019-06-09T01:25:00Z Partitions of groups into sparse subsets Protasov, I. A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset F ⊂ X, such that ∩x∈FxA is finite. We denote by η(G) the minimal cardinal such that G can be partitioned in η(G) sparse subsets. If |G| > (κ+)א0 then η(G) > κ, if |G| ≤ κ+ then η(G) ≤ κ. We show also that cov(A) ≥ cf|G| for each sparse subset A of an infinite group G, where cov(A) = min{|X| : G = X A}. 2012 Article Partitions of groups into sparse subsets / I. Protasov // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 107–110. — Бібліогр.: 7 назв. — англ. 1726-3255 2010 Mathematics Subject Classification: 03E75, 20F99, 20K99. http://dspace.nbuv.gov.ua/handle/123456789/152190 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset F ⊂ X, such that ∩x∈FxA is finite. We denote by η(G) the minimal cardinal such that G can be partitioned in η(G) sparse subsets. If |G| > (κ+)א0 then η(G) > κ, if |G| ≤ κ+ then η(G) ≤ κ. We show also that cov(A) ≥ cf|G| for each sparse subset A of an infinite group G, where cov(A) = min{|X| : G = X A}.
format Article
author Protasov, I.
spellingShingle Protasov, I.
Partitions of groups into sparse subsets
Algebra and Discrete Mathematics
author_facet Protasov, I.
author_sort Protasov, I.
title Partitions of groups into sparse subsets
title_short Partitions of groups into sparse subsets
title_full Partitions of groups into sparse subsets
title_fullStr Partitions of groups into sparse subsets
title_full_unstemmed Partitions of groups into sparse subsets
title_sort partitions of groups into sparse subsets
publisher Інститут прикладної математики і механіки НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/152190
citation_txt Partitions of groups into sparse subsets / I. Protasov // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 107–110. — Бібліогр.: 7 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT protasovi partitionsofgroupsintosparsesubsets
first_indexed 2023-05-20T17:37:41Z
last_indexed 2023-05-20T17:37:41Z
_version_ 1796153724380381184