Partitions of groups into sparse subsets

A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset F ⊂ X, such that ∩x∈FxA is finite. We denote by η(G) the minimal cardinal such that G can be partitioned in η(G) sparse subsets. If |G| > (κ+)א0 then η(G) > κ, if |G| ≤ κ+ then η(G) ≤ κ....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Protasov, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152190
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Partitions of groups into sparse subsets / I. Protasov // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 107–110. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine

Схожі ресурси