2025-02-23T09:24:08-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-152191%22&qt=morelikethis&rows=5
2025-02-23T09:24:08-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-152191%22&qt=morelikethis&rows=5
2025-02-23T09:24:08-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:24:08-05:00 DEBUG: Deserialized SOLR response
Finite local nearrings on metacyclic Miller-Moreno p-groups
In this paper the metacyclic Miller-Moreno p-groups which appear as the additive groups of finite local nearrings are classified.
Saved in:
Main Authors: | Raievska, I.Yu., Sysak, Ya.P. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2012
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/152191 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T09:24:08-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-152191%22&qt=morelikethis
2025-02-23T09:24:08-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-152191%22&qt=morelikethis
2025-02-23T09:24:08-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:24:08-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Finite local nearrings on metacyclic Miller-Moreno p-groups
by: Yu. Raievska, et al.
Published: (2012) -
Finite local nearrings with split metacyclic additive group
by: I. Raievska, et al.
Published: (2016) -
Finite local nearrings with split metacyclic additive group
by: Raievska, I.I., et al.
Published: (2016) -
Groups of order p4 as additive groups of local near-rings
by: I. Raievska, et al.
Published: (2024) -
Groups of nilpotency class \(2\) of order \(p^4\) as additive groups of local nearrings
by: Raievska, Iryna, et al.
Published: (2024)