The spectral measure of the Markov operator related to 3-generated 2-group of intermediate growth and its Jacobi parameters

It is shown that the KNS-spectral measure of the typical Schreier graph of the action of 3-generated 2-group of intermediate growth constructed by the first author in 1980 on the boundary of binary rooted tree coincides with the Kesten’s spectral measure, and coincides (up to affine transformation o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Grigorchuk, R.I., Krylyuk, Ya.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152209
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The spectral measure of the Markov operator related to 3-generated 2-group of intermediate growth and its Jacobi parameters / R.I. Grigorchuk, Ya.S. Krylyuk // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 2. — С. 237–272. — Бібліогр.: 39 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:It is shown that the KNS-spectral measure of the typical Schreier graph of the action of 3-generated 2-group of intermediate growth constructed by the first author in 1980 on the boundary of binary rooted tree coincides with the Kesten’s spectral measure, and coincides (up to affine transformation of R) with the density of states of the corresponding diatomic linear chain. Jacoby matrix associated with Markov operator of simple random walk on these graphs is computed. It shown shown that KNS and Kesten's spectral measures of the Schreier graph based on the orbit of the point 1∞ are different but have the same support and are absolutely continuous with respect to the Lebesgue measure.