On factorizations of limited solubly ω-saturated formations
If F = F₁…Ft is the product of the formations F₁,…,Ft and F ≠ F₁…Fi−₁Fi+₁…Ft for all i = 1,…,t, then we call this product a non-cancellative factorization of the formation F. In this paper we gives a description of factorizable limited solubly ω-saturated formations.
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2012
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152211 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On factorizations of limited solubly ω-saturated formations / V. Selkin // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 2. — С. 289–298. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152211 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1522112019-06-09T01:25:19Z On factorizations of limited solubly ω-saturated formations Selkin, V. If F = F₁…Ft is the product of the formations F₁,…,Ft and F ≠ F₁…Fi−₁Fi+₁…Ft for all i = 1,…,t, then we call this product a non-cancellative factorization of the formation F. In this paper we gives a description of factorizable limited solubly ω-saturated formations. 2012 Article On factorizations of limited solubly ω-saturated formations / V. Selkin // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 2. — С. 289–298. — Бібліогр.: 11 назв. — англ. 1726-3255 2010 MSC:20D10. http://dspace.nbuv.gov.ua/handle/123456789/152211 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
If F = F₁…Ft is the product of the formations F₁,…,Ft and F ≠ F₁…Fi−₁Fi+₁…Ft for all i = 1,…,t, then we call this product a non-cancellative factorization of the formation F. In this paper we gives a description of factorizable limited solubly ω-saturated formations. |
format |
Article |
author |
Selkin, V. |
spellingShingle |
Selkin, V. On factorizations of limited solubly ω-saturated formations Algebra and Discrete Mathematics |
author_facet |
Selkin, V. |
author_sort |
Selkin, V. |
title |
On factorizations of limited solubly ω-saturated formations |
title_short |
On factorizations of limited solubly ω-saturated formations |
title_full |
On factorizations of limited solubly ω-saturated formations |
title_fullStr |
On factorizations of limited solubly ω-saturated formations |
title_full_unstemmed |
On factorizations of limited solubly ω-saturated formations |
title_sort |
on factorizations of limited solubly ω-saturated formations |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152211 |
citation_txt |
On factorizations of limited solubly ω-saturated formations / V. Selkin // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 2. — С. 289–298. — Бібліогр.: 11 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT selkinv onfactorizationsoflimitedsolublyōsaturatedformations |
first_indexed |
2023-05-20T17:37:45Z |
last_indexed |
2023-05-20T17:37:45Z |
_version_ |
1796153726618042368 |