On factorizations of limited solubly ω-saturated formations

If F = F₁…Ft is the product of the formations F₁,…,Ft and F ≠ F₁…Fi−₁Fi+₁…Ft for all i = 1,…,t, then we call this product a non-cancellative factorization of the formation F. In this paper we gives a description of factorizable limited solubly ω-saturated formations.

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Selkin, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152211
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On factorizations of limited solubly ω-saturated formations / V. Selkin // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 2. — С. 289–298. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152211
record_format dspace
spelling irk-123456789-1522112019-06-09T01:25:19Z On factorizations of limited solubly ω-saturated formations Selkin, V. If F = F₁…Ft is the product of the formations F₁,…,Ft and F ≠ F₁…Fi−₁Fi+₁…Ft for all i = 1,…,t, then we call this product a non-cancellative factorization of the formation F. In this paper we gives a description of factorizable limited solubly ω-saturated formations. 2012 Article On factorizations of limited solubly ω-saturated formations / V. Selkin // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 2. — С. 289–298. — Бібліогр.: 11 назв. — англ. 1726-3255 2010 MSC:20D10. http://dspace.nbuv.gov.ua/handle/123456789/152211 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description If F = F₁…Ft is the product of the formations F₁,…,Ft and F ≠ F₁…Fi−₁Fi+₁…Ft for all i = 1,…,t, then we call this product a non-cancellative factorization of the formation F. In this paper we gives a description of factorizable limited solubly ω-saturated formations.
format Article
author Selkin, V.
spellingShingle Selkin, V.
On factorizations of limited solubly ω-saturated formations
Algebra and Discrete Mathematics
author_facet Selkin, V.
author_sort Selkin, V.
title On factorizations of limited solubly ω-saturated formations
title_short On factorizations of limited solubly ω-saturated formations
title_full On factorizations of limited solubly ω-saturated formations
title_fullStr On factorizations of limited solubly ω-saturated formations
title_full_unstemmed On factorizations of limited solubly ω-saturated formations
title_sort on factorizations of limited solubly ω-saturated formations
publisher Інститут прикладної математики і механіки НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/152211
citation_txt On factorizations of limited solubly ω-saturated formations / V. Selkin // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 2. — С. 289–298. — Бібліогр.: 11 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT selkinv onfactorizationsoflimitedsolublyōsaturatedformations
first_indexed 2023-05-20T17:37:45Z
last_indexed 2023-05-20T17:37:45Z
_version_ 1796153726618042368