Local embeddability
For an arbitrary class of algebraic structures we consider a notion of a structure locally embeddable to structures of the class. This generalizes the notion of a group locally embeddable to finite groups studied by Vershik and Gordon. We give various model-theoretic characterizations of such struct...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2012
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152225 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Local embeddability / O. Belegradek // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 1. — С. 14–28. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152225 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1522252019-06-10T01:26:06Z Local embeddability Belegradek, O. For an arbitrary class of algebraic structures we consider a notion of a structure locally embeddable to structures of the class. This generalizes the notion of a group locally embeddable to finite groups studied by Vershik and Gordon. We give various model-theoretic characterizations of such structures. Some of them generalize known group-theoretic results. 2012 Article Local embeddability / O. Belegradek // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 1. — С. 14–28. — Бібліогр.: 12 назв. — англ. 1726-3255 2010 MSC:03C60, 20A15. http://dspace.nbuv.gov.ua/handle/123456789/152225 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For an arbitrary class of algebraic structures we consider a notion of a structure locally embeddable to structures of the class. This generalizes the notion of a group locally embeddable to finite groups studied by Vershik and Gordon. We give various model-theoretic characterizations of such structures. Some of them generalize known group-theoretic results. |
format |
Article |
author |
Belegradek, O. |
spellingShingle |
Belegradek, O. Local embeddability Algebra and Discrete Mathematics |
author_facet |
Belegradek, O. |
author_sort |
Belegradek, O. |
title |
Local embeddability |
title_short |
Local embeddability |
title_full |
Local embeddability |
title_fullStr |
Local embeddability |
title_full_unstemmed |
Local embeddability |
title_sort |
local embeddability |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152225 |
citation_txt |
Local embeddability / O. Belegradek // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 1. — С. 14–28. — Бібліогр.: 12 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT belegradeko localembeddability |
first_indexed |
2023-05-20T17:37:47Z |
last_indexed |
2023-05-20T17:37:47Z |
_version_ |
1796153728116457472 |