Characterization of finite groups with some S-quasinormal subgroups of fixed order
Let G be a finite group. A subgroup of G is said to be S-quasinormal in G if it permutes with every Sylow subgroup of G. We fix in every non-cyclic Sylow subgroup P of the generalized Fitting subgroup a subgroup D such that 1 < |D| < |P| and characterize G under the assumption that all subgrou...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2012
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152229 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Characterization of finite groups with some S-quasinormal subgroups of fixed order / M. Asaad, P. Csorgo // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 161–167. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152229 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1522292019-06-10T01:26:11Z Characterization of finite groups with some S-quasinormal subgroups of fixed order Asaad, M. Let G be a finite group. A subgroup of G is said to be S-quasinormal in G if it permutes with every Sylow subgroup of G. We fix in every non-cyclic Sylow subgroup P of the generalized Fitting subgroup a subgroup D such that 1 < |D| < |P| and characterize G under the assumption that all subgroups H of P with |H| = |D| are S-quasinormal in G. Some recent results are generalized. 2012 Article Characterization of finite groups with some S-quasinormal subgroups of fixed order / M. Asaad, P. Csorgo // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 161–167. — Бібліогр.: 11 назв. — англ. 1726-3255 2000 MSC:20D10, 20D30. http://dspace.nbuv.gov.ua/handle/123456789/152229 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let G be a finite group. A subgroup of G is said to be S-quasinormal in G if it permutes with every Sylow subgroup of G. We fix in every non-cyclic Sylow subgroup P of the generalized Fitting subgroup a subgroup D such that 1 < |D| < |P| and characterize G under the assumption that all subgroups H of P with |H| = |D| are S-quasinormal in G. Some recent results are generalized. |
format |
Article |
author |
Asaad, M. |
spellingShingle |
Asaad, M. Characterization of finite groups with some S-quasinormal subgroups of fixed order Algebra and Discrete Mathematics |
author_facet |
Asaad, M. |
author_sort |
Asaad, M. |
title |
Characterization of finite groups with some S-quasinormal subgroups of fixed order |
title_short |
Characterization of finite groups with some S-quasinormal subgroups of fixed order |
title_full |
Characterization of finite groups with some S-quasinormal subgroups of fixed order |
title_fullStr |
Characterization of finite groups with some S-quasinormal subgroups of fixed order |
title_full_unstemmed |
Characterization of finite groups with some S-quasinormal subgroups of fixed order |
title_sort |
characterization of finite groups with some s-quasinormal subgroups of fixed order |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152229 |
citation_txt |
Characterization of finite groups with some S-quasinormal subgroups of fixed order / M. Asaad, P. Csorgo // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 161–167. — Бібліогр.: 11 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT asaadm characterizationoffinitegroupswithsomesquasinormalsubgroupsoffixedorder |
first_indexed |
2023-05-20T17:37:48Z |
last_indexed |
2023-05-20T17:37:48Z |
_version_ |
1796153728535887872 |