Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers

We describe the geometry of representation of numbers belonging to (0, 1] by the positive Lüroth series, i.e., special series whose terms are reciprocal of positive integers. We establish the geometrical meaning of digits, give properties of cylinders, semicylinders and tail sets, metric relations;...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Zhykharyeva, Yu., Pratsiovytyi, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152235
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers / Yu. Zhykharyeva, M. Pratsiovytyi // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 1. — С. 145–160. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152235
record_format dspace
spelling irk-123456789-1522352019-06-10T01:26:15Z Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers Zhykharyeva, Yu. Pratsiovytyi, M. We describe the geometry of representation of numbers belonging to (0, 1] by the positive Lüroth series, i.e., special series whose terms are reciprocal of positive integers. We establish the geometrical meaning of digits, give properties of cylinders, semicylinders and tail sets, metric relations; prove topological, metric and fractal properties of sets of numbers with restrictions on use of “digits”; show that for determination of Hausdorff-Besicovitch dimension of Borel set it is enough to use connected unions of cylindrical sets of the same rank. Some applications of L-representation to probabilistic theory of numbers are also considered. 2012 Article Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers / Yu. Zhykharyeva, M. Pratsiovytyi // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 1. — С. 145–160. — Бібліогр.: 18 назв. — англ. 1726-3255 2010 MSC:11K55. http://dspace.nbuv.gov.ua/handle/123456789/152235 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We describe the geometry of representation of numbers belonging to (0, 1] by the positive Lüroth series, i.e., special series whose terms are reciprocal of positive integers. We establish the geometrical meaning of digits, give properties of cylinders, semicylinders and tail sets, metric relations; prove topological, metric and fractal properties of sets of numbers with restrictions on use of “digits”; show that for determination of Hausdorff-Besicovitch dimension of Borel set it is enough to use connected unions of cylindrical sets of the same rank. Some applications of L-representation to probabilistic theory of numbers are also considered.
format Article
author Zhykharyeva, Yu.
Pratsiovytyi, M.
spellingShingle Zhykharyeva, Yu.
Pratsiovytyi, M.
Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
Algebra and Discrete Mathematics
author_facet Zhykharyeva, Yu.
Pratsiovytyi, M.
author_sort Zhykharyeva, Yu.
title Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
title_short Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
title_full Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
title_fullStr Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
title_full_unstemmed Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
title_sort expansions of numbers in positive lüroth series and their applications to metric, probabilistic and fractal theories of numbers
publisher Інститут прикладної математики і механіки НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/152235
citation_txt Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers / Yu. Zhykharyeva, M. Pratsiovytyi // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 1. — С. 145–160. — Бібліогр.: 18 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT zhykharyevayu expansionsofnumbersinpositivelurothseriesandtheirapplicationstometricprobabilisticandfractaltheoriesofnumbers
AT pratsiovytyim expansionsofnumbersinpositivelurothseriesandtheirapplicationstometricprobabilisticandfractaltheoriesofnumbers
first_indexed 2023-05-20T17:37:49Z
last_indexed 2023-05-20T17:37:49Z
_version_ 1796153729168179200