Word length in symmetrized presentations of Thompson’s group F

Thompson's groups F, T and Z were introduced by Richard Thompson in the 1960's in connection with questions in logic. They have since found applications in many areas of mathematics including algebra, logic and topology, and their metric properties with respect to standard generating sets...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Horak, M., Johnson, A., Stonesifer, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152238
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Word length in symmetrized presentations of Thompson’s group F / M. Horak, A. Johnson, A. Stonesifer // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 185–216. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152238
record_format dspace
spelling irk-123456789-1522382019-06-10T01:26:19Z Word length in symmetrized presentations of Thompson’s group F Horak, M. Johnson, A. Stonesifer, A. Thompson's groups F, T and Z were introduced by Richard Thompson in the 1960's in connection with questions in logic. They have since found applications in many areas of mathematics including algebra, logic and topology, and their metric properties with respect to standard generating sets have been studied heavily. In this paper, we introduce a new family of generating sets for F, which we denote as Zn, establish a formula for the word metric with respect to Z₁ and prove that F has dead ends of depth at least 2 with respect to Z₁. 2012 Article Word length in symmetrized presentations of Thompson’s group F / M. Horak, A. Johnson, A. Stonesifer // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 185–216. — Бібліогр.: 12 назв. — англ. 1726-3255 2010 MSC:20F65. http://dspace.nbuv.gov.ua/handle/123456789/152238 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Thompson's groups F, T and Z were introduced by Richard Thompson in the 1960's in connection with questions in logic. They have since found applications in many areas of mathematics including algebra, logic and topology, and their metric properties with respect to standard generating sets have been studied heavily. In this paper, we introduce a new family of generating sets for F, which we denote as Zn, establish a formula for the word metric with respect to Z₁ and prove that F has dead ends of depth at least 2 with respect to Z₁.
format Article
author Horak, M.
Johnson, A.
Stonesifer, A.
spellingShingle Horak, M.
Johnson, A.
Stonesifer, A.
Word length in symmetrized presentations of Thompson’s group F
Algebra and Discrete Mathematics
author_facet Horak, M.
Johnson, A.
Stonesifer, A.
author_sort Horak, M.
title Word length in symmetrized presentations of Thompson’s group F
title_short Word length in symmetrized presentations of Thompson’s group F
title_full Word length in symmetrized presentations of Thompson’s group F
title_fullStr Word length in symmetrized presentations of Thompson’s group F
title_full_unstemmed Word length in symmetrized presentations of Thompson’s group F
title_sort word length in symmetrized presentations of thompson’s group f
publisher Інститут прикладної математики і механіки НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/152238
citation_txt Word length in symmetrized presentations of Thompson’s group F / M. Horak, A. Johnson, A. Stonesifer // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 185–216. — Бібліогр.: 12 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT horakm wordlengthinsymmetrizedpresentationsofthompsonsgroupf
AT johnsona wordlengthinsymmetrizedpresentationsofthompsonsgroupf
AT stonesifera wordlengthinsymmetrizedpresentationsofthompsonsgroupf
first_indexed 2023-05-20T17:37:49Z
last_indexed 2023-05-20T17:37:49Z
_version_ 1796153729483800576