Orthoscalar representations of the partially ordered set (N, 4)
We obtain a one-parameter series of orthoscalar representations of the partially ordered set (N, 4). This proves that the classification of such representations is a problem of infinite type.
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2012
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152239 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Orthoscalar representations of the partially ordered set (N, 4) / S.A. Kruglyak, I.V. Livinsky // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 217–229. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152239 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1522392019-06-10T01:25:36Z Orthoscalar representations of the partially ordered set (N, 4) Kruglyak, S.A. Livinsky, I.V. We obtain a one-parameter series of orthoscalar representations of the partially ordered set (N, 4). This proves that the classification of such representations is a problem of infinite type. 2012 Article Orthoscalar representations of the partially ordered set (N, 4) / S.A. Kruglyak, I.V. Livinsky // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 217–229. — Бібліогр.: 18 назв. — англ. 1726-3255 2010 MSC:16G20. http://dspace.nbuv.gov.ua/handle/123456789/152239 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We obtain a one-parameter series of orthoscalar representations of the partially ordered set (N, 4). This proves that the classification of such representations is a problem of infinite type. |
format |
Article |
author |
Kruglyak, S.A. Livinsky, I.V. |
spellingShingle |
Kruglyak, S.A. Livinsky, I.V. Orthoscalar representations of the partially ordered set (N, 4) Algebra and Discrete Mathematics |
author_facet |
Kruglyak, S.A. Livinsky, I.V. |
author_sort |
Kruglyak, S.A. |
title |
Orthoscalar representations of the partially ordered set (N, 4) |
title_short |
Orthoscalar representations of the partially ordered set (N, 4) |
title_full |
Orthoscalar representations of the partially ordered set (N, 4) |
title_fullStr |
Orthoscalar representations of the partially ordered set (N, 4) |
title_full_unstemmed |
Orthoscalar representations of the partially ordered set (N, 4) |
title_sort |
orthoscalar representations of the partially ordered set (n, 4) |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152239 |
citation_txt |
Orthoscalar representations of the partially ordered set (N, 4) / S.A. Kruglyak, I.V. Livinsky // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 217–229. — Бібліогр.: 18 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT kruglyaksa orthoscalarrepresentationsofthepartiallyorderedsetn4 AT livinskyiv orthoscalarrepresentationsofthepartiallyorderedsetn4 |
first_indexed |
2023-05-20T17:37:49Z |
last_indexed |
2023-05-20T17:37:49Z |
_version_ |
1796153729589706752 |