The detour hull number of a graph

For vertices u and v in a connected graph G = (V, E), the set ID[u, v] consists of all those vertices lying on a u−v longest path in G. Given a set S of vertices of G, the union of all sets ID[u, v] for u, v ∈ S, is denoted by ID[S]. A set S is a detour convex set if ID[S] = S. The detour convex hul...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Santhakumaran, A.P., Ullas Chandran, S.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152246
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The detour hull number of a graph / A.P. Santhakumaran, S.V. Ullas Chandran // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 307–322. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152246
record_format dspace
spelling irk-123456789-1522462019-06-10T01:25:35Z The detour hull number of a graph Santhakumaran, A.P. Ullas Chandran, S.V. For vertices u and v in a connected graph G = (V, E), the set ID[u, v] consists of all those vertices lying on a u−v longest path in G. Given a set S of vertices of G, the union of all sets ID[u, v] for u, v ∈ S, is denoted by ID[S]. A set S is a detour convex set if ID[S] = S. The detour convex hull [S]D of S in G is the smallest detour convex set containing S. The detour hull number dh(G) is the minimum cardinality among the subsets S of V with [S]D = V. A set S of vertices is called a detour set if ID[S] = V. The minimum cardinality of a detour set is the detour number dn(G) of G. A vertex x in G is a detour extreme vertex if it is an initial or terminal vertex of any detour containing x. Certain general properties of these concepts are studied. It is shown that for each pair of positive integers r and s, there is a connected graph G with r detour extreme vertices, each of degree s. Also, it is proved that every two integers a and b with 2 ≤ a ≤ b are realizable as the detour hull number and the detour number respectively, of some graph. For each triple D, k and n of positive integers with 2 ≤ k ≤ n − D + 1 and D ≥ 2, there is a connected graph of order n, detour diameter D and detour hull number k. Bounds for the detour hull number of a graph are obtained. It is proved that dn(G) = dh(G) for a connected graph G with detour diameter at most 4. Also, it is proved that for positive integers a, b and k ≥ 2 with a < b ≤ 2a, there exists a connected graph G with detour radius a, detour diameter b and detour hull number k. Graphs G for which dh(G) = n − 1 or dh(G) = n − 2 are characterized. 2012 Article The detour hull number of a graph / A.P. Santhakumaran, S.V. Ullas Chandran // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 307–322. — Бібліогр.: 14 назв. — англ. 1726-3255 2010 MSC:05C12. http://dspace.nbuv.gov.ua/handle/123456789/152246 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For vertices u and v in a connected graph G = (V, E), the set ID[u, v] consists of all those vertices lying on a u−v longest path in G. Given a set S of vertices of G, the union of all sets ID[u, v] for u, v ∈ S, is denoted by ID[S]. A set S is a detour convex set if ID[S] = S. The detour convex hull [S]D of S in G is the smallest detour convex set containing S. The detour hull number dh(G) is the minimum cardinality among the subsets S of V with [S]D = V. A set S of vertices is called a detour set if ID[S] = V. The minimum cardinality of a detour set is the detour number dn(G) of G. A vertex x in G is a detour extreme vertex if it is an initial or terminal vertex of any detour containing x. Certain general properties of these concepts are studied. It is shown that for each pair of positive integers r and s, there is a connected graph G with r detour extreme vertices, each of degree s. Also, it is proved that every two integers a and b with 2 ≤ a ≤ b are realizable as the detour hull number and the detour number respectively, of some graph. For each triple D, k and n of positive integers with 2 ≤ k ≤ n − D + 1 and D ≥ 2, there is a connected graph of order n, detour diameter D and detour hull number k. Bounds for the detour hull number of a graph are obtained. It is proved that dn(G) = dh(G) for a connected graph G with detour diameter at most 4. Also, it is proved that for positive integers a, b and k ≥ 2 with a < b ≤ 2a, there exists a connected graph G with detour radius a, detour diameter b and detour hull number k. Graphs G for which dh(G) = n − 1 or dh(G) = n − 2 are characterized.
format Article
author Santhakumaran, A.P.
Ullas Chandran, S.V.
spellingShingle Santhakumaran, A.P.
Ullas Chandran, S.V.
The detour hull number of a graph
Algebra and Discrete Mathematics
author_facet Santhakumaran, A.P.
Ullas Chandran, S.V.
author_sort Santhakumaran, A.P.
title The detour hull number of a graph
title_short The detour hull number of a graph
title_full The detour hull number of a graph
title_fullStr The detour hull number of a graph
title_full_unstemmed The detour hull number of a graph
title_sort detour hull number of a graph
publisher Інститут прикладної математики і механіки НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/152246
citation_txt The detour hull number of a graph / A.P. Santhakumaran, S.V. Ullas Chandran // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 307–322. — Бібліогр.: 14 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT santhakumaranap thedetourhullnumberofagraph
AT ullaschandransv thedetourhullnumberofagraph
AT santhakumaranap detourhullnumberofagraph
AT ullaschandransv detourhullnumberofagraph
first_indexed 2023-05-20T17:37:51Z
last_indexed 2023-05-20T17:37:51Z
_version_ 1796153730322661376