The detour hull number of a graph
For vertices u and v in a connected graph G = (V, E), the set ID[u, v] consists of all those vertices lying on a u−v longest path in G. Given a set S of vertices of G, the union of all sets ID[u, v] for u, v ∈ S, is denoted by ID[S]. A set S is a detour convex set if ID[S] = S. The detour convex hul...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2012
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152246 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The detour hull number of a graph / A.P. Santhakumaran, S.V. Ullas Chandran // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 307–322. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152246 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1522462019-06-10T01:25:35Z The detour hull number of a graph Santhakumaran, A.P. Ullas Chandran, S.V. For vertices u and v in a connected graph G = (V, E), the set ID[u, v] consists of all those vertices lying on a u−v longest path in G. Given a set S of vertices of G, the union of all sets ID[u, v] for u, v ∈ S, is denoted by ID[S]. A set S is a detour convex set if ID[S] = S. The detour convex hull [S]D of S in G is the smallest detour convex set containing S. The detour hull number dh(G) is the minimum cardinality among the subsets S of V with [S]D = V. A set S of vertices is called a detour set if ID[S] = V. The minimum cardinality of a detour set is the detour number dn(G) of G. A vertex x in G is a detour extreme vertex if it is an initial or terminal vertex of any detour containing x. Certain general properties of these concepts are studied. It is shown that for each pair of positive integers r and s, there is a connected graph G with r detour extreme vertices, each of degree s. Also, it is proved that every two integers a and b with 2 ≤ a ≤ b are realizable as the detour hull number and the detour number respectively, of some graph. For each triple D, k and n of positive integers with 2 ≤ k ≤ n − D + 1 and D ≥ 2, there is a connected graph of order n, detour diameter D and detour hull number k. Bounds for the detour hull number of a graph are obtained. It is proved that dn(G) = dh(G) for a connected graph G with detour diameter at most 4. Also, it is proved that for positive integers a, b and k ≥ 2 with a < b ≤ 2a, there exists a connected graph G with detour radius a, detour diameter b and detour hull number k. Graphs G for which dh(G) = n − 1 or dh(G) = n − 2 are characterized. 2012 Article The detour hull number of a graph / A.P. Santhakumaran, S.V. Ullas Chandran // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 307–322. — Бібліогр.: 14 назв. — англ. 1726-3255 2010 MSC:05C12. http://dspace.nbuv.gov.ua/handle/123456789/152246 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For vertices u and v in a connected graph G = (V, E), the set ID[u, v] consists of all those vertices lying on a u−v longest path in G. Given a set S of vertices of G, the union of all sets ID[u, v] for u, v ∈ S, is denoted by ID[S]. A set S is a detour convex set if ID[S] = S. The detour convex hull [S]D of S in G is the smallest detour convex set containing S. The detour hull number dh(G) is the minimum cardinality among the subsets S of V with [S]D = V. A set S of vertices is called a detour set if ID[S] = V. The minimum cardinality of a detour set is the detour number dn(G) of G. A vertex x in G is a detour extreme vertex if it is an initial or terminal vertex of any detour containing x. Certain general properties of these concepts are studied. It is shown that for each pair of positive integers r and s, there is a connected graph G with r detour extreme vertices, each of degree s. Also, it is proved that every two integers a and b with 2 ≤ a ≤ b are realizable as the detour hull number and the detour number respectively, of some graph. For each triple D, k and n of positive integers with 2 ≤ k ≤ n − D + 1 and D ≥ 2, there is a connected graph of order n, detour diameter D and detour hull number k. Bounds for the detour hull number of a graph are obtained. It is proved that dn(G) = dh(G) for a connected graph G with detour diameter at most 4. Also, it is proved that for positive integers a, b and k ≥ 2 with a < b ≤ 2a, there exists a connected graph G with detour radius a, detour diameter b and detour hull number k. Graphs G for which dh(G) = n − 1 or dh(G) = n − 2 are characterized. |
format |
Article |
author |
Santhakumaran, A.P. Ullas Chandran, S.V. |
spellingShingle |
Santhakumaran, A.P. Ullas Chandran, S.V. The detour hull number of a graph Algebra and Discrete Mathematics |
author_facet |
Santhakumaran, A.P. Ullas Chandran, S.V. |
author_sort |
Santhakumaran, A.P. |
title |
The detour hull number of a graph |
title_short |
The detour hull number of a graph |
title_full |
The detour hull number of a graph |
title_fullStr |
The detour hull number of a graph |
title_full_unstemmed |
The detour hull number of a graph |
title_sort |
detour hull number of a graph |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152246 |
citation_txt |
The detour hull number of a graph / A.P. Santhakumaran, S.V. Ullas Chandran // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 307–322. — Бібліогр.: 14 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT santhakumaranap thedetourhullnumberofagraph AT ullaschandransv thedetourhullnumberofagraph AT santhakumaranap detourhullnumberofagraph AT ullaschandransv detourhullnumberofagraph |
first_indexed |
2023-05-20T17:37:51Z |
last_indexed |
2023-05-20T17:37:51Z |
_version_ |
1796153730322661376 |