Weighted zero-sum problems over C₃ʳ
Let Cn be the cyclic group of order n and set sA(Crn) as the smallest integer ℓ such that every sequence S in Cʳn of length at least ℓ has an A-zero-sum subsequence of length equal to exp(Cʳn), for A = {−1, 1}. In this paper, among other things, we give estimates for sA(C₃ʳ), and prove that sA(C₃³)...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2013
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152283 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Weighted zero-sum problems over C₃ʳ / H. Godinho, A. Lemos, D. Marques // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 201–212. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152283 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1522832019-06-10T01:26:00Z Weighted zero-sum problems over C₃ʳ Godinho, H. Lemos, A. Marques, D. Let Cn be the cyclic group of order n and set sA(Crn) as the smallest integer ℓ such that every sequence S in Cʳn of length at least ℓ has an A-zero-sum subsequence of length equal to exp(Cʳn), for A = {−1, 1}. In this paper, among other things, we give estimates for sA(C₃ʳ), and prove that sA(C₃³) = 9, sA(C₃⁴) = 21 and 41 ≤ sA(C₃⁵) ≤ 45. 2013 Article Weighted zero-sum problems over C₃ʳ / H. Godinho, A. Lemos, D. Marques // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 201–212. — Бібліогр.: 13 назв. — англ. 1726-3255 2010 MSC:20D60, 20K01. http://dspace.nbuv.gov.ua/handle/123456789/152283 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let Cn be the cyclic group of order n and set sA(Crn) as the smallest integer ℓ such that every sequence S in Cʳn of length at least ℓ has an A-zero-sum subsequence of length equal to exp(Cʳn), for A = {−1, 1}. In this paper, among other things, we give estimates for sA(C₃ʳ), and prove that sA(C₃³) = 9, sA(C₃⁴) = 21 and 41 ≤ sA(C₃⁵) ≤ 45. |
format |
Article |
author |
Godinho, H. Lemos, A. Marques, D. |
spellingShingle |
Godinho, H. Lemos, A. Marques, D. Weighted zero-sum problems over C₃ʳ Algebra and Discrete Mathematics |
author_facet |
Godinho, H. Lemos, A. Marques, D. |
author_sort |
Godinho, H. |
title |
Weighted zero-sum problems over C₃ʳ |
title_short |
Weighted zero-sum problems over C₃ʳ |
title_full |
Weighted zero-sum problems over C₃ʳ |
title_fullStr |
Weighted zero-sum problems over C₃ʳ |
title_full_unstemmed |
Weighted zero-sum problems over C₃ʳ |
title_sort |
weighted zero-sum problems over c₃ʳ |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152283 |
citation_txt |
Weighted zero-sum problems over C₃ʳ / H. Godinho, A. Lemos, D. Marques // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 201–212. — Бібліогр.: 13 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT godinhoh weightedzerosumproblemsoverc3r AT lemosa weightedzerosumproblemsoverc3r AT marquesd weightedzerosumproblemsoverc3r |
first_indexed |
2023-05-20T17:37:56Z |
last_indexed |
2023-05-20T17:37:56Z |
_version_ |
1796153734241189888 |