Weighted zero-sum problems over C₃ʳ

Let Cn be the cyclic group of order n and set sA(Crn) as the smallest integer ℓ such that every sequence S in Cʳn of length at least ℓ has an A-zero-sum subsequence of length equal to exp(Cʳn), for A = {−1, 1}. In this paper, among other things, we give estimates for sA(C₃ʳ), and prove that sA(C₃³)...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Godinho, H., Lemos, A., Marques, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152283
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Weighted zero-sum problems over C₃ʳ / H. Godinho, A. Lemos, D. Marques // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 201–212. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152283
record_format dspace
spelling irk-123456789-1522832019-06-10T01:26:00Z Weighted zero-sum problems over C₃ʳ Godinho, H. Lemos, A. Marques, D. Let Cn be the cyclic group of order n and set sA(Crn) as the smallest integer ℓ such that every sequence S in Cʳn of length at least ℓ has an A-zero-sum subsequence of length equal to exp(Cʳn), for A = {−1, 1}. In this paper, among other things, we give estimates for sA(C₃ʳ), and prove that sA(C₃³) = 9, sA(C₃⁴) = 21 and 41 ≤ sA(C₃⁵) ≤ 45. 2013 Article Weighted zero-sum problems over C₃ʳ / H. Godinho, A. Lemos, D. Marques // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 201–212. — Бібліогр.: 13 назв. — англ. 1726-3255 2010 MSC:20D60, 20K01. http://dspace.nbuv.gov.ua/handle/123456789/152283 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let Cn be the cyclic group of order n and set sA(Crn) as the smallest integer ℓ such that every sequence S in Cʳn of length at least ℓ has an A-zero-sum subsequence of length equal to exp(Cʳn), for A = {−1, 1}. In this paper, among other things, we give estimates for sA(C₃ʳ), and prove that sA(C₃³) = 9, sA(C₃⁴) = 21 and 41 ≤ sA(C₃⁵) ≤ 45.
format Article
author Godinho, H.
Lemos, A.
Marques, D.
spellingShingle Godinho, H.
Lemos, A.
Marques, D.
Weighted zero-sum problems over C₃ʳ
Algebra and Discrete Mathematics
author_facet Godinho, H.
Lemos, A.
Marques, D.
author_sort Godinho, H.
title Weighted zero-sum problems over C₃ʳ
title_short Weighted zero-sum problems over C₃ʳ
title_full Weighted zero-sum problems over C₃ʳ
title_fullStr Weighted zero-sum problems over C₃ʳ
title_full_unstemmed Weighted zero-sum problems over C₃ʳ
title_sort weighted zero-sum problems over c₃ʳ
publisher Інститут прикладної математики і механіки НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/152283
citation_txt Weighted zero-sum problems over C₃ʳ / H. Godinho, A. Lemos, D. Marques // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 201–212. — Бібліогр.: 13 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT godinhoh weightedzerosumproblemsoverc3r
AT lemosa weightedzerosumproblemsoverc3r
AT marquesd weightedzerosumproblemsoverc3r
first_indexed 2023-05-20T17:37:56Z
last_indexed 2023-05-20T17:37:56Z
_version_ 1796153734241189888