Weighted zero-sum problems over C₃ʳ
Let Cn be the cyclic group of order n and set sA(Crn) as the smallest integer ℓ such that every sequence S in Cʳn of length at least ℓ has an A-zero-sum subsequence of length equal to exp(Cʳn), for A = {−1, 1}. In this paper, among other things, we give estimates for sA(C₃ʳ), and prove that sA(C₃³)...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | Godinho, H., Lemos, A., Marques, D. |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2013
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152283 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Weighted zero-sum problems over C₃ʳ / H. Godinho, A. Lemos, D. Marques // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 201–212. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineСхожі ресурси
-
Weighted zero-sum problems over \(C_3^r\)
за авторством: Godinho, Hemar, та інші
Опубліковано: (2018) -
Weighted zero-sum problems over Cr3
за авторством: H. Godinho, та інші
Опубліковано: (2013) -
On the mean value of the generalized Dedekind sum and certain generalized Hardy sums weighted by the Kloosterman sum
за авторством: M. C. Dağli, та інші
Опубліковано: (2023) -
Zero-sum subsets of decomposable sets in Abelian groups
за авторством: Banakh, T., та інші
Опубліковано: (2020) -
Zero-sum subsets of decomposable sets in Abelian groups
за авторством: Banakh, T., та інші
Опубліковано: (2020)