Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)
In this work the closure operators of a category of modules R-Mod are studied. Every closure operator C of R-Mod defines two functions F₁с and F₂с, which in every module M distinguish the set of C-dense submodules F₁с(M) and the set of C-closed submodules F₂с(M). By means of these functions three ty...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2013
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152290 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 213–228. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this work the closure operators of a category of modules R-Mod are studied. Every closure operator C of R-Mod defines two functions F₁с and F₂с, which in every module M distinguish the set of C-dense submodules F₁с(M) and the set of C-closed submodules F₂с(M). By means of these functions three types of closure operators are described: 1) weakly hereditary; 2) idempotent; 3) weakly hereditary and idempotent. |
---|