The p–gen nature of M₀(V ) (I)
Let V be a finite group (not elementary two) and p ≥ 5 a prime. The question as to when the nearring M₀(V) of all zero-fixing self-maps on V is generated by a unit of order p is difficult. In this paper we show M₀(V) is so generated if and only if V does not belong to one of three finite disjoint fa...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2013
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152293 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The p–gen nature of M₀(V ) (I) / S.D. Scott // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 237–268. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Let V be a finite group (not elementary two) and p ≥ 5 a prime. The question as to when the nearring M₀(V) of all zero-fixing self-maps on V is generated by a unit of order p is difficult. In this paper we show M₀(V) is so generated if and only if V does not belong to one of three finite disjoint families D#(1, p) (=D(1, p) ∪ {{0}}), D(2, p) and D(3, p) of groups, where D(n, p) are those groups G (not elementary two) with |G| ≤ np and δ(G) > (n − 1)p (see [1] or §.1 for the definition of δ(G)). |
---|