The p–gen nature of M₀(V ) (I)

Let V be a finite group (not elementary two) and p ≥ 5 a prime. The question as to when the nearring M₀(V) of all zero-fixing self-maps on V is generated by a unit of order p is difficult. In this paper we show M₀(V) is so generated if and only if V does not belong to one of three finite disjoint fa...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Scott, S.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152293
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The p–gen nature of M₀(V ) (I) / S.D. Scott // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 237–268. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152293
record_format dspace
spelling irk-123456789-1522932019-06-10T01:26:02Z The p–gen nature of M₀(V ) (I) Scott, S.D. Let V be a finite group (not elementary two) and p ≥ 5 a prime. The question as to when the nearring M₀(V) of all zero-fixing self-maps on V is generated by a unit of order p is difficult. In this paper we show M₀(V) is so generated if and only if V does not belong to one of three finite disjoint families D#(1, p) (=D(1, p) ∪ {{0}}), D(2, p) and D(3, p) of groups, where D(n, p) are those groups G (not elementary two) with |G| ≤ np and δ(G) > (n − 1)p (see [1] or §.1 for the definition of δ(G)). 2013 Article The p–gen nature of M₀(V ) (I) / S.D. Scott // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 237–268. — Бібліогр.: 6 назв. — англ. 1726-3255 2010 MSC:16Y30. http://dspace.nbuv.gov.ua/handle/123456789/152293 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let V be a finite group (not elementary two) and p ≥ 5 a prime. The question as to when the nearring M₀(V) of all zero-fixing self-maps on V is generated by a unit of order p is difficult. In this paper we show M₀(V) is so generated if and only if V does not belong to one of three finite disjoint families D#(1, p) (=D(1, p) ∪ {{0}}), D(2, p) and D(3, p) of groups, where D(n, p) are those groups G (not elementary two) with |G| ≤ np and δ(G) > (n − 1)p (see [1] or §.1 for the definition of δ(G)).
format Article
author Scott, S.D.
spellingShingle Scott, S.D.
The p–gen nature of M₀(V ) (I)
Algebra and Discrete Mathematics
author_facet Scott, S.D.
author_sort Scott, S.D.
title The p–gen nature of M₀(V ) (I)
title_short The p–gen nature of M₀(V ) (I)
title_full The p–gen nature of M₀(V ) (I)
title_fullStr The p–gen nature of M₀(V ) (I)
title_full_unstemmed The p–gen nature of M₀(V ) (I)
title_sort p–gen nature of m₀(v ) (i)
publisher Інститут прикладної математики і механіки НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/152293
citation_txt The p–gen nature of M₀(V ) (I) / S.D. Scott // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 237–268. — Бібліогр.: 6 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT scottsd thepgennatureofm0vi
AT scottsd pgennatureofm0vi
first_indexed 2023-05-20T17:37:57Z
last_indexed 2023-05-20T17:37:57Z
_version_ 1796153735307591680