Groups with many pronormal and transitively normal subgroups
A subgroup H of a group G is said to be transitively normal in G, if H is normal in every subgroup K ≥ H such that H is subnormal in K. The study of radical groups, whose not finitely generated subgroups are transitively normal, has been started by L. A. Kurdachenko, N. N. Semko (Jr.), I. Ya. Subb...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2013
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152295 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Groups with many pronormal and transitively normal subgroups / N.N. Semko (Jr.) // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 269–286. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152295 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1522952019-06-10T01:26:01Z Groups with many pronormal and transitively normal subgroups Semko (Jr.), N.N. A subgroup H of a group G is said to be transitively normal in G, if H is normal in every subgroup K ≥ H such that H is subnormal in K. The study of radical groups, whose not finitely generated subgroups are transitively normal, has been started by L. A. Kurdachenko, N. N. Semko (Jr.), I. Ya. Subbotin. In this paper the study of such groups is continued. 2013 Article Groups with many pronormal and transitively normal subgroups / N.N. Semko (Jr.) // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 269–286. — Бібліогр.: 26 назв. — англ. 1726-3255 2010 MSC:20E15, 2019. http://dspace.nbuv.gov.ua/handle/123456789/152295 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A subgroup H of a group G is said to be transitively normal in G, if H is normal in every subgroup K ≥ H such that H is subnormal in K. The study of radical groups, whose not finitely generated subgroups are transitively normal, has been started by L. A. Kurdachenko, N. N. Semko (Jr.), I. Ya. Subbotin. In this paper the study of such groups is continued. |
format |
Article |
author |
Semko (Jr.), N.N. |
spellingShingle |
Semko (Jr.), N.N. Groups with many pronormal and transitively normal subgroups Algebra and Discrete Mathematics |
author_facet |
Semko (Jr.), N.N. |
author_sort |
Semko (Jr.), N.N. |
title |
Groups with many pronormal and transitively normal subgroups |
title_short |
Groups with many pronormal and transitively normal subgroups |
title_full |
Groups with many pronormal and transitively normal subgroups |
title_fullStr |
Groups with many pronormal and transitively normal subgroups |
title_full_unstemmed |
Groups with many pronormal and transitively normal subgroups |
title_sort |
groups with many pronormal and transitively normal subgroups |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152295 |
citation_txt |
Groups with many pronormal and transitively normal subgroups / N.N. Semko (Jr.) // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 269–286. — Бібліогр.: 26 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT semkojrnn groupswithmanypronormalandtransitivelynormalsubgroups |
first_indexed |
2023-05-20T17:37:57Z |
last_indexed |
2023-05-20T17:37:57Z |
_version_ |
1796153735518355456 |