On the relation between completeness and H-closedness of pospaces without infinite antichains
We study the relation between completeness and H-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not H-closed. On the other hand, for a topological partial...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2013
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152296 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the relation between completeness and H-closedness of pospaces without infinite antichains / T. Yokoyama // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 287–294. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152296 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1522962019-06-11T01:25:09Z On the relation between completeness and H-closedness of pospaces without infinite antichains Yokoyama, T. We study the relation between completeness and H-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not H-closed. On the other hand, for a topological partially ordered space without infinite antichains, we give necessary and sufficient condition to be H-closed, using directed completeness and down-directed completeness. Indeed, we prove that {a pospace} X is H-closed if and only if each up-directed (resp. down-directed) subset has a supremum (resp. infimum) and, for each nonempty chain L ⊆ X, ⋁ L∈ cl ↓ L and ⋀L ∈ cl ↑ L. This extends a result of Gutik, Pagon, and Repovs [GPR]. 2013 Article On the relation between completeness and H-closedness of pospaces without infinite antichains / T. Yokoyama // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 287–294. — Бібліогр.: 3 назв. — англ. 1726-3255 2010 MSC:Primary 06A06, 06F30; Secondary 54F05, 54H12. http://dspace.nbuv.gov.ua/handle/123456789/152296 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study the relation between completeness and H-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not H-closed. On the other hand, for a topological partially ordered space without infinite antichains, we give necessary and sufficient condition to be H-closed, using directed completeness and down-directed completeness. Indeed, we prove that {a pospace} X is H-closed if and only if each up-directed (resp. down-directed) subset has a supremum (resp. infimum) and, for each nonempty chain L ⊆ X, ⋁ L∈ cl ↓ L and ⋀L ∈ cl ↑ L. This extends a result of Gutik, Pagon, and Repovs [GPR]. |
format |
Article |
author |
Yokoyama, T. |
spellingShingle |
Yokoyama, T. On the relation between completeness and H-closedness of pospaces without infinite antichains Algebra and Discrete Mathematics |
author_facet |
Yokoyama, T. |
author_sort |
Yokoyama, T. |
title |
On the relation between completeness and H-closedness of pospaces without infinite antichains |
title_short |
On the relation between completeness and H-closedness of pospaces without infinite antichains |
title_full |
On the relation between completeness and H-closedness of pospaces without infinite antichains |
title_fullStr |
On the relation between completeness and H-closedness of pospaces without infinite antichains |
title_full_unstemmed |
On the relation between completeness and H-closedness of pospaces without infinite antichains |
title_sort |
on the relation between completeness and h-closedness of pospaces without infinite antichains |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152296 |
citation_txt |
On the relation between completeness and H-closedness of pospaces without infinite antichains / T. Yokoyama // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 287–294. — Бібліогр.: 3 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT yokoyamat ontherelationbetweencompletenessandhclosednessofpospaceswithoutinfiniteantichains |
first_indexed |
2023-05-20T17:37:57Z |
last_indexed |
2023-05-20T17:37:57Z |
_version_ |
1796153735623213056 |