On the relation between completeness and H-closedness of pospaces without infinite antichains

We study the relation between completeness and H-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not H-closed. On the other hand, for a topological partial...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Yokoyama, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152296
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the relation between completeness and H-closedness of pospaces without infinite antichains / T. Yokoyama // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 287–294. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152296
record_format dspace
spelling irk-123456789-1522962019-06-11T01:25:09Z On the relation between completeness and H-closedness of pospaces without infinite antichains Yokoyama, T. We study the relation between completeness and H-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not H-closed. On the other hand, for a topological partially ordered space without infinite antichains, we give necessary and sufficient condition to be H-closed, using directed completeness and down-directed completeness. Indeed, we prove that {a pospace} X is H-closed if and only if each up-directed (resp. down-directed) subset has a supremum (resp. infimum) and, for each nonempty chain L ⊆ X, ⋁ L∈ cl ↓ L and ⋀L ∈ cl ↑ L. This extends a result of Gutik, Pagon, and Repovs [GPR]. 2013 Article On the relation between completeness and H-closedness of pospaces without infinite antichains / T. Yokoyama // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 287–294. — Бібліогр.: 3 назв. — англ. 1726-3255 2010 MSC:Primary 06A06, 06F30; Secondary 54F05, 54H12. http://dspace.nbuv.gov.ua/handle/123456789/152296 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study the relation between completeness and H-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not H-closed. On the other hand, for a topological partially ordered space without infinite antichains, we give necessary and sufficient condition to be H-closed, using directed completeness and down-directed completeness. Indeed, we prove that {a pospace} X is H-closed if and only if each up-directed (resp. down-directed) subset has a supremum (resp. infimum) and, for each nonempty chain L ⊆ X, ⋁ L∈ cl ↓ L and ⋀L ∈ cl ↑ L. This extends a result of Gutik, Pagon, and Repovs [GPR].
format Article
author Yokoyama, T.
spellingShingle Yokoyama, T.
On the relation between completeness and H-closedness of pospaces without infinite antichains
Algebra and Discrete Mathematics
author_facet Yokoyama, T.
author_sort Yokoyama, T.
title On the relation between completeness and H-closedness of pospaces without infinite antichains
title_short On the relation between completeness and H-closedness of pospaces without infinite antichains
title_full On the relation between completeness and H-closedness of pospaces without infinite antichains
title_fullStr On the relation between completeness and H-closedness of pospaces without infinite antichains
title_full_unstemmed On the relation between completeness and H-closedness of pospaces without infinite antichains
title_sort on the relation between completeness and h-closedness of pospaces without infinite antichains
publisher Інститут прикладної математики і механіки НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/152296
citation_txt On the relation between completeness and H-closedness of pospaces without infinite antichains / T. Yokoyama // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 287–294. — Бібліогр.: 3 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT yokoyamat ontherelationbetweencompletenessandhclosednessofpospaceswithoutinfiniteantichains
first_indexed 2023-05-20T17:37:57Z
last_indexed 2023-05-20T17:37:57Z
_version_ 1796153735623213056