On maximal and minimal linear matching property
The matching basis in field extentions is introduced by S. Eliahou and C. Lecouvey in [2]. In this paper we define the minimal and maximal linear matching property for field extensions and prove that if K is not algebraically closed, then K has minimal linear matching property. In this paper we will...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2013
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152300 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On maximal and minimal linear matching property / M. Aliabadi, M.R. Darafsheh // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 174–178. — Бібліогр.: 7 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The matching basis in field extentions is introduced by S. Eliahou and C. Lecouvey in [2]. In this paper we define the minimal and maximal linear matching property for field extensions and prove that if K is not algebraically closed, then K has minimal linear matching property. In this paper we will prove that algebraic number fields have maximal linear matching property. We also give a shorter proof of a result established in [6] on the fundamental theorem of algebra. |
---|