Labelling matrices and index matrices of a graph structure

The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol 3, No.2, Dec 2006, 65-123. Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Dinesh, T., Ramakrishnan, T.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152307
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Labelling matrices and index matrices of a graph structure / T. Dinesh, T. V. Ramakrishnan // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 42–60. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol 3, No.2, Dec 2006, 65-123. Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J. Combin. Theory, Ser. B30 (1981), 290-301) proved that the collection of all admissible index vectors and the collection of all labellings for 0 form free F-modules (F is a commutative ring). We have obtained similar results on graph structures in a previous paper. In the present paper, we introduce labelling matrices and index matrices of graph structures and prove that the collection of all admissible index matrices and the collection of all labelling matrices for 0 form free F-modules. We also find their ranks in various cases of bipartition and char F (equal to 2 and not equal to 2).