Labelling matrices and index matrices of a graph structure

The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol 3, No.2, Dec 2006, 65-123. Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Dinesh, T., Ramakrishnan, T.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152307
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Labelling matrices and index matrices of a graph structure / T. Dinesh, T. V. Ramakrishnan // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 42–60. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152307
record_format dspace
spelling irk-123456789-1523072019-06-10T01:25:28Z Labelling matrices and index matrices of a graph structure Dinesh, T. Ramakrishnan, T.V. The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol 3, No.2, Dec 2006, 65-123. Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J. Combin. Theory, Ser. B30 (1981), 290-301) proved that the collection of all admissible index vectors and the collection of all labellings for 0 form free F-modules (F is a commutative ring). We have obtained similar results on graph structures in a previous paper. In the present paper, we introduce labelling matrices and index matrices of graph structures and prove that the collection of all admissible index matrices and the collection of all labelling matrices for 0 form free F-modules. We also find their ranks in various cases of bipartition and char F (equal to 2 and not equal to 2). 2013 Article Labelling matrices and index matrices of a graph structure / T. Dinesh, T. V. Ramakrishnan // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 42–60. — Бібліогр.: 12 назв. — англ. 1726-3255 2010 MSC:05C07,05C78. http://dspace.nbuv.gov.ua/handle/123456789/152307 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol 3, No.2, Dec 2006, 65-123. Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J. Combin. Theory, Ser. B30 (1981), 290-301) proved that the collection of all admissible index vectors and the collection of all labellings for 0 form free F-modules (F is a commutative ring). We have obtained similar results on graph structures in a previous paper. In the present paper, we introduce labelling matrices and index matrices of graph structures and prove that the collection of all admissible index matrices and the collection of all labelling matrices for 0 form free F-modules. We also find their ranks in various cases of bipartition and char F (equal to 2 and not equal to 2).
format Article
author Dinesh, T.
Ramakrishnan, T.V.
spellingShingle Dinesh, T.
Ramakrishnan, T.V.
Labelling matrices and index matrices of a graph structure
Algebra and Discrete Mathematics
author_facet Dinesh, T.
Ramakrishnan, T.V.
author_sort Dinesh, T.
title Labelling matrices and index matrices of a graph structure
title_short Labelling matrices and index matrices of a graph structure
title_full Labelling matrices and index matrices of a graph structure
title_fullStr Labelling matrices and index matrices of a graph structure
title_full_unstemmed Labelling matrices and index matrices of a graph structure
title_sort labelling matrices and index matrices of a graph structure
publisher Інститут прикладної математики і механіки НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/152307
citation_txt Labelling matrices and index matrices of a graph structure / T. Dinesh, T. V. Ramakrishnan // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 42–60. — Бібліогр.: 12 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT dinesht labellingmatricesandindexmatricesofagraphstructure
AT ramakrishnantv labellingmatricesandindexmatricesofagraphstructure
first_indexed 2023-05-20T17:38:01Z
last_indexed 2023-05-20T17:38:01Z
_version_ 1796153736780840960