Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)

This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category R-Mod are described. Using the results of [1], in this part the other classes of closure operators C are characterized by the associated functions F₁с and F₂с which...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Kashu, A.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152310
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 81–95. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152310
record_format dspace
spelling irk-123456789-1523102019-06-11T01:25:07Z Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) Kashu, A.I. This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category R-Mod are described. Using the results of [1], in this part the other classes of closure operators C are characterized by the associated functions F₁с and F₂с which separate in every module M ∈ R-Mod the sets of C-dense submodules and C-closed submodules. This method is applied to the classes of hereditary, maximal, minimal and cohereditary closure operators. 2013 Article Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 81–95. — Бібліогр.: 9 назв. — англ. 1726-3255 2010 MSC:16D90, 16S90, 06B23. http://dspace.nbuv.gov.ua/handle/123456789/152310 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category R-Mod are described. Using the results of [1], in this part the other classes of closure operators C are characterized by the associated functions F₁с and F₂с which separate in every module M ∈ R-Mod the sets of C-dense submodules and C-closed submodules. This method is applied to the classes of hereditary, maximal, minimal and cohereditary closure operators.
format Article
author Kashu, A.I.
spellingShingle Kashu, A.I.
Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
Algebra and Discrete Mathematics
author_facet Kashu, A.I.
author_sort Kashu, A.I.
title Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
title_short Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
title_full Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
title_fullStr Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
title_full_unstemmed Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
title_sort closure operators in the categories of modules. part ii (hereditary and cohereditary operators)
publisher Інститут прикладної математики і механіки НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/152310
citation_txt Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 81–95. — Бібліогр.: 9 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT kashuai closureoperatorsinthecategoriesofmodulespartiihereditaryandcohereditaryoperators
first_indexed 2023-05-20T17:38:01Z
last_indexed 2023-05-20T17:38:01Z
_version_ 1796153737097510912