Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category R-Mod are described. Using the results of [1], in this part the other classes of closure operators C are characterized by the associated functions F₁с and F₂с which...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2013
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152310 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 81–95. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152310 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1523102019-06-11T01:25:07Z Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) Kashu, A.I. This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category R-Mod are described. Using the results of [1], in this part the other classes of closure operators C are characterized by the associated functions F₁с and F₂с which separate in every module M ∈ R-Mod the sets of C-dense submodules and C-closed submodules. This method is applied to the classes of hereditary, maximal, minimal and cohereditary closure operators. 2013 Article Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 81–95. — Бібліогр.: 9 назв. — англ. 1726-3255 2010 MSC:16D90, 16S90, 06B23. http://dspace.nbuv.gov.ua/handle/123456789/152310 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category R-Mod are described. Using the results of [1], in this part the other classes of closure operators C are characterized by the associated functions F₁с and F₂с which separate in every module M ∈ R-Mod the sets of C-dense submodules and C-closed submodules. This method is applied to the classes of hereditary, maximal, minimal and cohereditary closure operators. |
format |
Article |
author |
Kashu, A.I. |
spellingShingle |
Kashu, A.I. Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) Algebra and Discrete Mathematics |
author_facet |
Kashu, A.I. |
author_sort |
Kashu, A.I. |
title |
Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) |
title_short |
Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) |
title_full |
Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) |
title_fullStr |
Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) |
title_full_unstemmed |
Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) |
title_sort |
closure operators in the categories of modules. part ii (hereditary and cohereditary operators) |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152310 |
citation_txt |
Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 81–95. — Бібліогр.: 9 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT kashuai closureoperatorsinthecategoriesofmodulespartiihereditaryandcohereditaryoperators |
first_indexed |
2023-05-20T17:38:01Z |
last_indexed |
2023-05-20T17:38:01Z |
_version_ |
1796153737097510912 |