On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field

In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field k: ker ˆφ(k) × coker(φ(k)) ⟶ k∗, and proved its perfectness over finite field. We prove perfectness of the Tate pairing associate...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Nesteruk, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152312
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field / V. Nesteruk // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 103–106. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field k: ker ˆφ(k) × coker(φ(k)) ⟶ k∗, and proved its perfectness over finite field. We prove perfectness of the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field, with help of the method, used by P. Bruin in the case of finite ground field [1].