On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field
In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field k: ker ˆφ(k) × coker(φ(k)) ⟶ k∗, and proved its perfectness over finite field. We prove perfectness of the Tate pairing associate...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2013
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152312 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field / V. Nesteruk // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 103–106. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152312 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1523122019-06-10T01:26:22Z On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field Nesteruk, V. In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field k: ker ˆφ(k) × coker(φ(k)) ⟶ k∗, and proved its perfectness over finite field. We prove perfectness of the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field, with help of the method, used by P. Bruin in the case of finite ground field [1]. 2013 Article On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field / V. Nesteruk // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 103–106. — Бібліогр.: 8 назв. — англ. 1726-3255 2010 MSC:12G99, 14H05, 14K02. http://dspace.nbuv.gov.ua/handle/123456789/152312 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field k: ker ˆφ(k) × coker(φ(k)) ⟶ k∗, and proved its perfectness over finite field. We prove perfectness of the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field, with help of the method, used by P. Bruin in the case of finite ground field [1]. |
format |
Article |
author |
Nesteruk, V. |
spellingShingle |
Nesteruk, V. On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field Algebra and Discrete Mathematics |
author_facet |
Nesteruk, V. |
author_sort |
Nesteruk, V. |
title |
On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field |
title_short |
On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field |
title_full |
On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field |
title_fullStr |
On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field |
title_full_unstemmed |
On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field |
title_sort |
on the tate pairing associated to an isogeny between abelian varieties over pseudofinite field |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152312 |
citation_txt |
On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field / V. Nesteruk // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 103–106. — Бібліогр.: 8 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT nesterukv onthetatepairingassociatedtoanisogenybetweenabelianvarietiesoverpseudofinitefield |
first_indexed |
2023-05-20T17:38:02Z |
last_indexed |
2023-05-20T17:38:02Z |
_version_ |
1796153737308274688 |