Algorithmic computation of principal posets using Maple and Python

We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets I that are principal, i.e., the rational symmetric Gram matrix GI : = 1/2[CI+CItr] ∈ MI(Q) of I is positive semi-definite of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Gasiorek, M., Simson, D., Zajac, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2014
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152339
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Algorithmic computation of principal posets using Maple and Python / M. Gasiorek, D. Simson, K. Zajac // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 33–69. — Бібліогр.: 56 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152339
record_format dspace
spelling irk-123456789-1523392019-06-11T01:25:16Z Algorithmic computation of principal posets using Maple and Python Gasiorek, M. Simson, D. Zajac, K. We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets I that are principal, i.e., the rational symmetric Gram matrix GI : = 1/2[CI+CItr] ∈ MI(Q) of I is positive semi-definite of corank one, where CI ∈ MI(Z) is the incidence matrix of I. With any such a connected poset I, we associate a simply laced Euclidean diagram DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈}, the Coxeter matrix CoxI := −CI ⋅ C−trI, its complex Coxeter spectrum speccI, and a reduced Coxeter number cI. One of our aims is to show that the spectrum speccI of any such a poset I determines the incidence matrix CI (hence the poset I) uniquely, up to a Z-congruence. By computer calculations, we find a complete list of principal one-peak posets I (i.e., I has a unique maximal element) of cardinality ≤ 15, together with speccI, cI, the incidence defect ∂I : ZI → Z, and the Coxeter-Euclidean type DI. In case when DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈} and n := |I| is relatively small, we show that given such a principal poset I, the incidence matrix CI is Z-congruent with the non-symmetric Gram matrix GˇDI of DI, speccI = speccDI and cˇI = cˇDI. Moreover, given a pair of principal posets I and J, with |I| = |J| ≤ 15, the matrices CI and CJ are Z-congruent if and only if speccI = speccJ. 2014 Article Algorithmic computation of principal posets using Maple and Python / M. Gasiorek, D. Simson, K. Zajac // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 33–69. — Бібліогр.: 56 назв. — англ. 1726-3255 2010 MSC:06A11, 15A63, 68R05, 68W30. http://dspace.nbuv.gov.ua/handle/123456789/152339 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets I that are principal, i.e., the rational symmetric Gram matrix GI : = 1/2[CI+CItr] ∈ MI(Q) of I is positive semi-definite of corank one, where CI ∈ MI(Z) is the incidence matrix of I. With any such a connected poset I, we associate a simply laced Euclidean diagram DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈}, the Coxeter matrix CoxI := −CI ⋅ C−trI, its complex Coxeter spectrum speccI, and a reduced Coxeter number cI. One of our aims is to show that the spectrum speccI of any such a poset I determines the incidence matrix CI (hence the poset I) uniquely, up to a Z-congruence. By computer calculations, we find a complete list of principal one-peak posets I (i.e., I has a unique maximal element) of cardinality ≤ 15, together with speccI, cI, the incidence defect ∂I : ZI → Z, and the Coxeter-Euclidean type DI. In case when DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈} and n := |I| is relatively small, we show that given such a principal poset I, the incidence matrix CI is Z-congruent with the non-symmetric Gram matrix GˇDI of DI, speccI = speccDI and cˇI = cˇDI. Moreover, given a pair of principal posets I and J, with |I| = |J| ≤ 15, the matrices CI and CJ are Z-congruent if and only if speccI = speccJ.
format Article
author Gasiorek, M.
Simson, D.
Zajac, K.
spellingShingle Gasiorek, M.
Simson, D.
Zajac, K.
Algorithmic computation of principal posets using Maple and Python
Algebra and Discrete Mathematics
author_facet Gasiorek, M.
Simson, D.
Zajac, K.
author_sort Gasiorek, M.
title Algorithmic computation of principal posets using Maple and Python
title_short Algorithmic computation of principal posets using Maple and Python
title_full Algorithmic computation of principal posets using Maple and Python
title_fullStr Algorithmic computation of principal posets using Maple and Python
title_full_unstemmed Algorithmic computation of principal posets using Maple and Python
title_sort algorithmic computation of principal posets using maple and python
publisher Інститут прикладної математики і механіки НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/152339
citation_txt Algorithmic computation of principal posets using Maple and Python / M. Gasiorek, D. Simson, K. Zajac // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 33–69. — Бібліогр.: 56 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT gasiorekm algorithmiccomputationofprincipalposetsusingmapleandpython
AT simsond algorithmiccomputationofprincipalposetsusingmapleandpython
AT zajack algorithmiccomputationofprincipalposetsusingmapleandpython
first_indexed 2023-05-20T17:38:05Z
last_indexed 2023-05-20T17:38:05Z
_version_ 1796153739951734784