Algorithmic computation of principal posets using Maple and Python
We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets I that are principal, i.e., the rational symmetric Gram matrix GI : = 1/2[CI+CItr] ∈ MI(Q) of I is positive semi-definite of...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2014
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152339 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Algorithmic computation of principal posets using Maple and Python / M. Gasiorek, D. Simson, K. Zajac // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 33–69. — Бібліогр.: 56 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152339 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1523392019-06-11T01:25:16Z Algorithmic computation of principal posets using Maple and Python Gasiorek, M. Simson, D. Zajac, K. We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets I that are principal, i.e., the rational symmetric Gram matrix GI : = 1/2[CI+CItr] ∈ MI(Q) of I is positive semi-definite of corank one, where CI ∈ MI(Z) is the incidence matrix of I. With any such a connected poset I, we associate a simply laced Euclidean diagram DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈}, the Coxeter matrix CoxI := −CI ⋅ C−trI, its complex Coxeter spectrum speccI, and a reduced Coxeter number cI. One of our aims is to show that the spectrum speccI of any such a poset I determines the incidence matrix CI (hence the poset I) uniquely, up to a Z-congruence. By computer calculations, we find a complete list of principal one-peak posets I (i.e., I has a unique maximal element) of cardinality ≤ 15, together with speccI, cI, the incidence defect ∂I : ZI → Z, and the Coxeter-Euclidean type DI. In case when DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈} and n := |I| is relatively small, we show that given such a principal poset I, the incidence matrix CI is Z-congruent with the non-symmetric Gram matrix GˇDI of DI, speccI = speccDI and cˇI = cˇDI. Moreover, given a pair of principal posets I and J, with |I| = |J| ≤ 15, the matrices CI and CJ are Z-congruent if and only if speccI = speccJ. 2014 Article Algorithmic computation of principal posets using Maple and Python / M. Gasiorek, D. Simson, K. Zajac // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 33–69. — Бібліогр.: 56 назв. — англ. 1726-3255 2010 MSC:06A11, 15A63, 68R05, 68W30. http://dspace.nbuv.gov.ua/handle/123456789/152339 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets I that are principal, i.e., the rational symmetric Gram matrix GI : = 1/2[CI+CItr] ∈ MI(Q) of I is positive semi-definite of corank one, where CI ∈ MI(Z) is the incidence matrix of I. With any such a connected poset I, we associate a simply laced Euclidean diagram DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈}, the Coxeter matrix CoxI := −CI ⋅ C−trI, its complex Coxeter spectrum speccI, and a reduced Coxeter number cI. One of our aims is to show that the spectrum speccI of any such a poset I determines the incidence matrix CI (hence the poset I) uniquely, up to a Z-congruence. By computer calculations, we find a complete list of principal one-peak posets I (i.e., I has a unique maximal element) of cardinality ≤ 15, together with speccI, cI, the incidence defect ∂I : ZI → Z, and the Coxeter-Euclidean type DI. In case when DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈} and n := |I| is relatively small, we show that given such a principal poset I, the incidence matrix CI is Z-congruent with the non-symmetric Gram matrix GˇDI of DI, speccI = speccDI and cˇI = cˇDI. Moreover, given a pair of principal posets I and J, with |I| = |J| ≤ 15, the matrices CI and CJ are Z-congruent if and only if speccI = speccJ. |
format |
Article |
author |
Gasiorek, M. Simson, D. Zajac, K. |
spellingShingle |
Gasiorek, M. Simson, D. Zajac, K. Algorithmic computation of principal posets using Maple and Python Algebra and Discrete Mathematics |
author_facet |
Gasiorek, M. Simson, D. Zajac, K. |
author_sort |
Gasiorek, M. |
title |
Algorithmic computation of principal posets using Maple and Python |
title_short |
Algorithmic computation of principal posets using Maple and Python |
title_full |
Algorithmic computation of principal posets using Maple and Python |
title_fullStr |
Algorithmic computation of principal posets using Maple and Python |
title_full_unstemmed |
Algorithmic computation of principal posets using Maple and Python |
title_sort |
algorithmic computation of principal posets using maple and python |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152339 |
citation_txt |
Algorithmic computation of principal posets using Maple and Python / M. Gasiorek, D. Simson, K. Zajac // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 33–69. — Бібліогр.: 56 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT gasiorekm algorithmiccomputationofprincipalposetsusingmapleandpython AT simsond algorithmiccomputationofprincipalposetsusingmapleandpython AT zajack algorithmiccomputationofprincipalposetsusingmapleandpython |
first_indexed |
2023-05-20T17:38:05Z |
last_indexed |
2023-05-20T17:38:05Z |
_version_ |
1796153739951734784 |