A maximal T-space of F₃[x]₀
In earlier work, we have established that for any finite field k, the free associative k-algebra on one generator x, denoted by k[x]₀, has infinitely many maximal T-spaces, but exactly two maximal T-ideals (each of which is a maximal T-space). However, aside from these two T-ideals, no specific exam...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2013
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152343 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A maximal T-space of F₃[x]₀ / C. Bekh-Ochir, S.A. Rankin // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 160–170. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In earlier work, we have established that for any finite field k, the free associative k-algebra on one generator x, denoted by k[x]₀, has infinitely many maximal T-spaces, but exactly two maximal T-ideals (each of which is a maximal T-space). However, aside from these two T-ideals, no specific examples of maximal T-spaces of k[x]₀ were determined at that time. In a subsequent work, we proposed that for a finite field k of characteristic p > 2 and order q, for each positive integer n which is a power of 2, the T-space Wn, generated by {x + xqⁿ, xqⁿ⁺¹}, is maximal, and we proved that W₁ is maximal. In this note, we prove that for q = p = 3, W₂ is maximal. |
---|