A maximal T-space of F₃[x]₀
In earlier work, we have established that for any finite field k, the free associative k-algebra on one generator x, denoted by k[x]₀, has infinitely many maximal T-spaces, but exactly two maximal T-ideals (each of which is a maximal T-space). However, aside from these two T-ideals, no specific exam...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2013
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152343 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A maximal T-space of F₃[x]₀ / C. Bekh-Ochir, S.A. Rankin // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 160–170. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152343 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1523432019-06-11T01:25:03Z A maximal T-space of F₃[x]₀ Bekh-Ochir, C. Rankin, S.A. In earlier work, we have established that for any finite field k, the free associative k-algebra on one generator x, denoted by k[x]₀, has infinitely many maximal T-spaces, but exactly two maximal T-ideals (each of which is a maximal T-space). However, aside from these two T-ideals, no specific examples of maximal T-spaces of k[x]₀ were determined at that time. In a subsequent work, we proposed that for a finite field k of characteristic p > 2 and order q, for each positive integer n which is a power of 2, the T-space Wn, generated by {x + xqⁿ, xqⁿ⁺¹}, is maximal, and we proved that W₁ is maximal. In this note, we prove that for q = p = 3, W₂ is maximal. 2013 Article A maximal T-space of F₃[x]₀ / C. Bekh-Ochir, S.A. Rankin // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 160–170. — Бібліогр.: 5 назв. — англ. 1726-3255 2010 MSC:16R10. http://dspace.nbuv.gov.ua/handle/123456789/152343 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In earlier work, we have established that for any finite field k, the free associative k-algebra on one generator x, denoted by k[x]₀, has infinitely many maximal T-spaces, but exactly two maximal T-ideals (each of which is a maximal T-space). However, aside from these two T-ideals, no specific examples of maximal T-spaces of k[x]₀ were determined at that time. In a subsequent work, we proposed that for a finite field k of characteristic p > 2 and order q, for each positive integer n which is a power of 2, the T-space Wn, generated by {x + xqⁿ, xqⁿ⁺¹}, is maximal, and we proved that W₁ is maximal. In this note, we prove that for q = p = 3, W₂ is maximal. |
format |
Article |
author |
Bekh-Ochir, C. Rankin, S.A. |
spellingShingle |
Bekh-Ochir, C. Rankin, S.A. A maximal T-space of F₃[x]₀ Algebra and Discrete Mathematics |
author_facet |
Bekh-Ochir, C. Rankin, S.A. |
author_sort |
Bekh-Ochir, C. |
title |
A maximal T-space of F₃[x]₀ |
title_short |
A maximal T-space of F₃[x]₀ |
title_full |
A maximal T-space of F₃[x]₀ |
title_fullStr |
A maximal T-space of F₃[x]₀ |
title_full_unstemmed |
A maximal T-space of F₃[x]₀ |
title_sort |
maximal t-space of f₃[x]₀ |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152343 |
citation_txt |
A maximal T-space of F₃[x]₀ / C. Bekh-Ochir, S.A. Rankin // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 160–170. — Бібліогр.: 5 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT bekhochirc amaximaltspaceoff3x0 AT rankinsa amaximaltspaceoff3x0 AT bekhochirc maximaltspaceoff3x0 AT rankinsa maximaltspaceoff3x0 |
first_indexed |
2023-05-20T17:38:06Z |
last_indexed |
2023-05-20T17:38:06Z |
_version_ |
1796153739216683008 |