A maximal T-space of F₃[x]₀

In earlier work, we have established that for any finite field k, the free associative k-algebra on one generator x, denoted by k[x]₀, has infinitely many maximal T-spaces, but exactly two maximal T-ideals (each of which is a maximal T-space). However, aside from these two T-ideals, no specific exam...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Bekh-Ochir, C., Rankin, S.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152343
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A maximal T-space of F₃[x]₀ / C. Bekh-Ochir, S.A. Rankin // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 160–170. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152343
record_format dspace
spelling irk-123456789-1523432019-06-11T01:25:03Z A maximal T-space of F₃[x]₀ Bekh-Ochir, C. Rankin, S.A. In earlier work, we have established that for any finite field k, the free associative k-algebra on one generator x, denoted by k[x]₀, has infinitely many maximal T-spaces, but exactly two maximal T-ideals (each of which is a maximal T-space). However, aside from these two T-ideals, no specific examples of maximal T-spaces of k[x]₀ were determined at that time. In a subsequent work, we proposed that for a finite field k of characteristic p > 2 and order q, for each positive integer n which is a power of 2, the T-space Wn, generated by {x + xqⁿ, xqⁿ⁺¹}, is maximal, and we proved that W₁ is maximal. In this note, we prove that for q = p = 3, W₂ is maximal. 2013 Article A maximal T-space of F₃[x]₀ / C. Bekh-Ochir, S.A. Rankin // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 160–170. — Бібліогр.: 5 назв. — англ. 1726-3255 2010 MSC:16R10. http://dspace.nbuv.gov.ua/handle/123456789/152343 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In earlier work, we have established that for any finite field k, the free associative k-algebra on one generator x, denoted by k[x]₀, has infinitely many maximal T-spaces, but exactly two maximal T-ideals (each of which is a maximal T-space). However, aside from these two T-ideals, no specific examples of maximal T-spaces of k[x]₀ were determined at that time. In a subsequent work, we proposed that for a finite field k of characteristic p > 2 and order q, for each positive integer n which is a power of 2, the T-space Wn, generated by {x + xqⁿ, xqⁿ⁺¹}, is maximal, and we proved that W₁ is maximal. In this note, we prove that for q = p = 3, W₂ is maximal.
format Article
author Bekh-Ochir, C.
Rankin, S.A.
spellingShingle Bekh-Ochir, C.
Rankin, S.A.
A maximal T-space of F₃[x]₀
Algebra and Discrete Mathematics
author_facet Bekh-Ochir, C.
Rankin, S.A.
author_sort Bekh-Ochir, C.
title A maximal T-space of F₃[x]₀
title_short A maximal T-space of F₃[x]₀
title_full A maximal T-space of F₃[x]₀
title_fullStr A maximal T-space of F₃[x]₀
title_full_unstemmed A maximal T-space of F₃[x]₀
title_sort maximal t-space of f₃[x]₀
publisher Інститут прикладної математики і механіки НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/152343
citation_txt A maximal T-space of F₃[x]₀ / C. Bekh-Ochir, S.A. Rankin // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 160–170. — Бібліогр.: 5 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT bekhochirc amaximaltspaceoff3x0
AT rankinsa amaximaltspaceoff3x0
AT bekhochirc maximaltspaceoff3x0
AT rankinsa maximaltspaceoff3x0
first_indexed 2023-05-20T17:38:06Z
last_indexed 2023-05-20T17:38:06Z
_version_ 1796153739216683008