On some linear groups, having a big family of G-invariant subspaces
Let F be a field, A a vector space over F, GL(F, A) be the group of all automorphisms of the vector space A. If B is a subspace of A, then denote by BFG the G-invariant subspace, generated by B. A subspace B is called nearly G-invariant, if dimF(BFG/B) is finite. In this paper we described the situa...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2013
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152348 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On some linear groups, having a big family of G-invariant subspaces / L.A. Kurdachenko, A.V. Sadovnichenko // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 217–225. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152348 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1523482019-06-11T01:25:15Z On some linear groups, having a big family of G-invariant subspaces Kurdachenko, L.A. Sadovnichenko, A.V. Let F be a field, A a vector space over F, GL(F, A) be the group of all automorphisms of the vector space A. If B is a subspace of A, then denote by BFG the G-invariant subspace, generated by B. A subspace B is called nearly G-invariant, if dimF(BFG/B) is finite. In this paper we described the situation when every subspace of A is nearly G-invariant. 2013 Article On some linear groups, having a big family of G-invariant subspaces / L.A. Kurdachenko, A.V. Sadovnichenko // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 217–225. — Бібліогр.: 11 назв. — англ. 1726-3255 2010 MSC:15A03, 20F16, 20F29. http://dspace.nbuv.gov.ua/handle/123456789/152348 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let F be a field, A a vector space over F, GL(F, A) be the group of all automorphisms of the vector space A. If B is a subspace of A, then denote by BFG the G-invariant subspace, generated by B. A subspace B is called nearly G-invariant, if dimF(BFG/B) is finite. In this paper we described the situation when every subspace of A is nearly G-invariant. |
format |
Article |
author |
Kurdachenko, L.A. Sadovnichenko, A.V. |
spellingShingle |
Kurdachenko, L.A. Sadovnichenko, A.V. On some linear groups, having a big family of G-invariant subspaces Algebra and Discrete Mathematics |
author_facet |
Kurdachenko, L.A. Sadovnichenko, A.V. |
author_sort |
Kurdachenko, L.A. |
title |
On some linear groups, having a big family of G-invariant subspaces |
title_short |
On some linear groups, having a big family of G-invariant subspaces |
title_full |
On some linear groups, having a big family of G-invariant subspaces |
title_fullStr |
On some linear groups, having a big family of G-invariant subspaces |
title_full_unstemmed |
On some linear groups, having a big family of G-invariant subspaces |
title_sort |
on some linear groups, having a big family of g-invariant subspaces |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152348 |
citation_txt |
On some linear groups, having a big family of G-invariant subspaces / L.A. Kurdachenko, A.V. Sadovnichenko // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 217–225. — Бібліогр.: 11 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT kurdachenkola onsomelineargroupshavingabigfamilyofginvariantsubspaces AT sadovnichenkoav onsomelineargroupshavingabigfamilyofginvariantsubspaces |
first_indexed |
2023-05-20T17:38:07Z |
last_indexed |
2023-05-20T17:38:07Z |
_version_ |
1796153740372213760 |