Some combinatorial problems in the theory of partial transformation semigroups

Let Xn = {1,2,…,n}. On a partial transformation α : Dom α ⊆ Xn → Im α ⊆ Xn of Xn the following parameters are defined: the breadth or width of α is ∣ Dom α ∣, the collapse of α is c(α) = ∣ ∪t∈Imα{tα⁻¹ :∣ tα⁻¹ ∣≥ 2} ∣, fix of α is f(α) = ∣ {x ∈ Xn : xα = x} ∣, the height of α is ∣ Imα ∣, and the rig...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Umar, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2014
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152350
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Some combinatorial problems in the theory of partial transformation semigroups / A. Umar // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 110–134. — Бібліогр.: 56 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152350
record_format dspace
spelling irk-123456789-1523502019-06-11T01:25:17Z Some combinatorial problems in the theory of partial transformation semigroups Umar, A. Let Xn = {1,2,…,n}. On a partial transformation α : Dom α ⊆ Xn → Im α ⊆ Xn of Xn the following parameters are defined: the breadth or width of α is ∣ Dom α ∣, the collapse of α is c(α) = ∣ ∪t∈Imα{tα⁻¹ :∣ tα⁻¹ ∣≥ 2} ∣, fix of α is f(α) = ∣ {x ∈ Xn : xα = x} ∣, the height of α is ∣ Imα ∣, and the right [left] waist of α is max(Imα) [min(Imα)]. The cardinalities of some equivalences defined by equalities of these parameters on Tn, the semigroup of full transformations of Xn, and Pn the semigroup of partial transformations of Xn and some of their notable subsemigroups that have been computed are gathered together and the open problems highlighted. 2014 Article Some combinatorial problems in the theory of partial transformation semigroups / A. Umar // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 110–134. — Бібліогр.: 56 назв. — англ. 1726-3255 2010 MSC:20M17, 20M20, 05A10, 05A15. http://dspace.nbuv.gov.ua/handle/123456789/152350 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let Xn = {1,2,…,n}. On a partial transformation α : Dom α ⊆ Xn → Im α ⊆ Xn of Xn the following parameters are defined: the breadth or width of α is ∣ Dom α ∣, the collapse of α is c(α) = ∣ ∪t∈Imα{tα⁻¹ :∣ tα⁻¹ ∣≥ 2} ∣, fix of α is f(α) = ∣ {x ∈ Xn : xα = x} ∣, the height of α is ∣ Imα ∣, and the right [left] waist of α is max(Imα) [min(Imα)]. The cardinalities of some equivalences defined by equalities of these parameters on Tn, the semigroup of full transformations of Xn, and Pn the semigroup of partial transformations of Xn and some of their notable subsemigroups that have been computed are gathered together and the open problems highlighted.
format Article
author Umar, A.
spellingShingle Umar, A.
Some combinatorial problems in the theory of partial transformation semigroups
Algebra and Discrete Mathematics
author_facet Umar, A.
author_sort Umar, A.
title Some combinatorial problems in the theory of partial transformation semigroups
title_short Some combinatorial problems in the theory of partial transformation semigroups
title_full Some combinatorial problems in the theory of partial transformation semigroups
title_fullStr Some combinatorial problems in the theory of partial transformation semigroups
title_full_unstemmed Some combinatorial problems in the theory of partial transformation semigroups
title_sort some combinatorial problems in the theory of partial transformation semigroups
publisher Інститут прикладної математики і механіки НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/152350
citation_txt Some combinatorial problems in the theory of partial transformation semigroups / A. Umar // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 110–134. — Бібліогр.: 56 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT umara somecombinatorialproblemsinthetheoryofpartialtransformationsemigroups
first_indexed 2023-05-20T17:38:07Z
last_indexed 2023-05-20T17:38:07Z
_version_ 1796153740581928960