Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#

We present combinatorial algorithms constructing loop-free P-critical edge-bipartite (signed) graphs Δ′, with n ≥ 3 vertices, from pairs (Δ, w), with Δ a positive edge-bipartite graph having n-1 vertices and w a sincere root of Δ, up to an action ∗ : UBigrn × O(n, Z) → UBigrn of the orthogonal group...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Polak, A., Simson, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152352
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C# / A. Polak, D. Simson // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 242–286. — Бібліогр.: 43 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152352
record_format dspace
spelling irk-123456789-1523522019-06-12T01:25:18Z Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C# Polak, A. Simson, D. We present combinatorial algorithms constructing loop-free P-critical edge-bipartite (signed) graphs Δ′, with n ≥ 3 vertices, from pairs (Δ, w), with Δ a positive edge-bipartite graph having n-1 vertices and w a sincere root of Δ, up to an action ∗ : UBigrn × O(n, Z) → UBigrn of the orthogonal group O(n, Z) on the set UBigrn of loop-free edge-bipartite graphs, with n ≥ 3 vertices. Here Z is the ring of integers. We also present a package of algorithms for a Coxeter spectral analysis of graphs in UBigrn and for computing the O(n, Z)-orbits of P-critical graphs Δ in UBigrn as well as the positive ones. By applying the package, symbolic computations in Maple and numerical computations in C#, we compute P-critical graphs in UBigrn and connected positive graphs in UBigrn, together with their Coxeter polynomials, reduced Coxeter numbers, and the O(n, Z)-orbits, for n ≤ 10. The computational results are presented in tables of Section 5. 2013 Article Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C# / A. Polak, D. Simson // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 242–286. — Бібліогр.: 43 назв. — англ. 1726-3255 2010 MSC:15A63, 11Y16, 68W30, 05E10 16G20, 20B40, 15A21. http://dspace.nbuv.gov.ua/handle/123456789/152352 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present combinatorial algorithms constructing loop-free P-critical edge-bipartite (signed) graphs Δ′, with n ≥ 3 vertices, from pairs (Δ, w), with Δ a positive edge-bipartite graph having n-1 vertices and w a sincere root of Δ, up to an action ∗ : UBigrn × O(n, Z) → UBigrn of the orthogonal group O(n, Z) on the set UBigrn of loop-free edge-bipartite graphs, with n ≥ 3 vertices. Here Z is the ring of integers. We also present a package of algorithms for a Coxeter spectral analysis of graphs in UBigrn and for computing the O(n, Z)-orbits of P-critical graphs Δ in UBigrn as well as the positive ones. By applying the package, symbolic computations in Maple and numerical computations in C#, we compute P-critical graphs in UBigrn and connected positive graphs in UBigrn, together with their Coxeter polynomials, reduced Coxeter numbers, and the O(n, Z)-orbits, for n ≤ 10. The computational results are presented in tables of Section 5.
format Article
author Polak, A.
Simson, D.
spellingShingle Polak, A.
Simson, D.
Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#
Algebra and Discrete Mathematics
author_facet Polak, A.
Simson, D.
author_sort Polak, A.
title Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#
title_short Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#
title_full Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#
title_fullStr Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#
title_full_unstemmed Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#
title_sort algorithms computing o(n, z)-orbits of p-critical edge-bipartite graphs and p-critical unit forms using maple and c#
publisher Інститут прикладної математики і механіки НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/152352
citation_txt Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C# / A. Polak, D. Simson // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 242–286. — Бібліогр.: 43 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT polaka algorithmscomputingonzorbitsofpcriticaledgebipartitegraphsandpcriticalunitformsusingmapleandc
AT simsond algorithmscomputingonzorbitsofpcriticaledgebipartitegraphsandpcriticalunitformsusingmapleandc
first_indexed 2023-05-20T17:38:07Z
last_indexed 2023-05-20T17:38:07Z
_version_ 1796153740794789888