Relative symmetric polynomials and money change problem

This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symme...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:Інститут прикладної математики і механіки НАН України
Дата:2013
Автор: Shahryari, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152353
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Цитувати:Relative symmetric polynomials and money change problem / M. Shahryari // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 287–292. — Бібліогр.: 3 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152353
record_format dspace
spelling irk-123456789-1523532019-06-11T01:24:59Z Relative symmetric polynomials and money change problem Shahryari, M. This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero. 2013 Article Relative symmetric polynomials and money change problem / M. Shahryari // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 287–292. — Бібліогр.: 3 назв. — англ. 1726-3255 2010 MSC:Primary 05A17, Secondary 05E05 and 15A69. http://dspace.nbuv.gov.ua/handle/123456789/152353 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero.
format Article
author Shahryari, M.
spellingShingle Shahryari, M.
Relative symmetric polynomials and money change problem
Algebra and Discrete Mathematics
author_facet Shahryari, M.
author_sort Shahryari, M.
title Relative symmetric polynomials and money change problem
title_short Relative symmetric polynomials and money change problem
title_full Relative symmetric polynomials and money change problem
title_fullStr Relative symmetric polynomials and money change problem
title_full_unstemmed Relative symmetric polynomials and money change problem
title_sort relative symmetric polynomials and money change problem
publisher Інститут прикладної математики і механіки НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/152353
citation_txt Relative symmetric polynomials and money change problem / M. Shahryari // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 287–292. — Бібліогр.: 3 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT shahryarim relativesymmetricpolynomialsandmoneychangeproblem
first_indexed 2023-05-20T17:38:07Z
last_indexed 2023-05-20T17:38:07Z
_version_ 1796153740899647488