2025-02-22T17:26:03-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-152353%22&qt=morelikethis&rows=5
2025-02-22T17:26:03-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-152353%22&qt=morelikethis&rows=5
2025-02-22T17:26:03-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T17:26:03-05:00 DEBUG: Deserialized SOLR response
Relative symmetric polynomials and money change problem
This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symme...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2013
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/152353 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-152353 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1523532019-06-11T01:24:59Z Relative symmetric polynomials and money change problem Shahryari, M. This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero. 2013 Article Relative symmetric polynomials and money change problem / M. Shahryari // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 287–292. — Бібліогр.: 3 назв. — англ. 1726-3255 2010 MSC:Primary 05A17, Secondary 05E05 and 15A69. http://dspace.nbuv.gov.ua/handle/123456789/152353 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
This article is devoted to the number of non-negative solutions of the linear Diophantine equation a₁t₁ + a₂t₂ + ⋯ + antn = d, where a₁,…,an, and d are positive integers. We obtain a relation between the number of solutions of this equation and characters of the symmetric group, using relative symmetric polynomials. As an application, we give a necessary and sufficient condition for the space of the relative symmetric polynomials to be non-zero. |
format |
Article |
author |
Shahryari, M. |
spellingShingle |
Shahryari, M. Relative symmetric polynomials and money change problem Algebra and Discrete Mathematics |
author_facet |
Shahryari, M. |
author_sort |
Shahryari, M. |
title |
Relative symmetric polynomials and money change problem |
title_short |
Relative symmetric polynomials and money change problem |
title_full |
Relative symmetric polynomials and money change problem |
title_fullStr |
Relative symmetric polynomials and money change problem |
title_full_unstemmed |
Relative symmetric polynomials and money change problem |
title_sort |
relative symmetric polynomials and money change problem |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152353 |
citation_txt |
Relative symmetric polynomials and money change problem / M. Shahryari // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 287–292. — Бібліогр.: 3 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT shahryarim relativesymmetricpolynomialsandmoneychangeproblem |
first_indexed |
2023-05-20T17:38:07Z |
last_indexed |
2023-05-20T17:38:07Z |
_version_ |
1796153740899647488 |