Chromatic number of graphs with special distance sets, I
Given a subset D of positive integers, an integer distance graph is a graph G(Z, D) with the set Z of integers as vertex set and with an edge joining two vertices u and v if and only if |u−v| ∈ D. In this paper we consider the problem of determining the chromatic number of certain integer distance g...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2014
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152354 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Chromatic number of graphs with special distance sets, I / V. Yegnanarayanan // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 135–160. — Бібліогр.: 59 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Given a subset D of positive integers, an integer distance graph is a graph G(Z, D) with the set Z of integers as vertex set and with an edge joining two vertices u and v if and only if |u−v| ∈ D. In this paper we consider the problem of determining the chromatic number of certain integer distance graphs G(Z, D)whose distance set D is either 1) a set of (n + 1) positive integers for which the nth power of the last is the sum of the nth powers of the previous terms, or 2) a set of pythagorean quadruples, or 3) a set of pythagorean n-tuples, or 4) a set of square distances, or 5) a set of abundant numbers or deficient numbers or carmichael numbers, or 6) a set of polytopic numbers, or 7) a set of happy numbers or lucky numbers, or 8) a set of Lucas numbers, or 9) a set of Ulam numbers, or 10) a set of weird numbers. Besides finding the chromatic number of a few specific distance graphs we also give useful upper and lower bounds for general cases. Further, we raise some open problems. |
---|