Multi-solid varieties and Mh-transducers
We consider the concepts of colored terms and multi-hypersubstitutions. If t∈Wτ(X) is a term of type τ, then any mapping αt:PosF(t)→N of the non-variable positions of a term into the set of natural numbers is called a coloration of t. The set Wcτ(X) of colored terms consists of all pairs ⟨t,αt⟩....
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152366 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Multi-solid varieties and Mh-transducers / S. Shtrakov // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 113–131. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We consider the concepts of colored terms and multi-hypersubstitutions. If t∈Wτ(X) is a term of type τ, then any mapping αt:PosF(t)→N of the non-variable positions of a term into the set of natural numbers is called a coloration of t. The set Wcτ(X) of colored terms consists of all pairs ⟨t,αt⟩. Hypersubstitutions are maps which assign to each operation symbol a term with the same arity. If M is a monoid of hypersubstitutions then any sequence ρ=(σ1,σ2,…) is a mapping ρ:N→M, called a multi-hypersubstitution over M. An identity t≈s, satisfied in a variety V is an M-multi-hyperidentity if its images ρ[t≈s] are also satisfied in V for all ρ∈M. A variety V is M-multi-solid, if all its identities are M−multi-hyperidentities. We prove a series of inclusions and equations concerning M-multi-solid varieties. Finally we give an automata realization of multi-hypersubstitutions and colored terms. |
---|