Multi-solid varieties and Mh-transducers
We consider the concepts of colored terms and multi-hypersubstitutions. If t∈Wτ(X) is a term of type τ, then any mapping αt:PosF(t)→N of the non-variable positions of a term into the set of natural numbers is called a coloration of t. The set Wcτ(X) of colored terms consists of all pairs ⟨t,αt⟩....
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152366 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Multi-solid varieties and Mh-transducers / S. Shtrakov // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 113–131. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152366 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1523662019-06-11T01:25:24Z Multi-solid varieties and Mh-transducers Shtrakov, S. We consider the concepts of colored terms and multi-hypersubstitutions. If t∈Wτ(X) is a term of type τ, then any mapping αt:PosF(t)→N of the non-variable positions of a term into the set of natural numbers is called a coloration of t. The set Wcτ(X) of colored terms consists of all pairs ⟨t,αt⟩. Hypersubstitutions are maps which assign to each operation symbol a term with the same arity. If M is a monoid of hypersubstitutions then any sequence ρ=(σ1,σ2,…) is a mapping ρ:N→M, called a multi-hypersubstitution over M. An identity t≈s, satisfied in a variety V is an M-multi-hyperidentity if its images ρ[t≈s] are also satisfied in V for all ρ∈M. A variety V is M-multi-solid, if all its identities are M−multi-hyperidentities. We prove a series of inclusions and equations concerning M-multi-solid varieties. Finally we give an automata realization of multi-hypersubstitutions and colored terms. 2007 Article Multi-solid varieties and Mh-transducers / S. Shtrakov // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 113–131. — Бібліогр.: 10 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:08B15, 03C05, 08A70. http://dspace.nbuv.gov.ua/handle/123456789/152366 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider the concepts of colored terms and multi-hypersubstitutions. If t∈Wτ(X) is a term of type τ, then any mapping αt:PosF(t)→N of the non-variable positions of a term into the set of natural numbers is called a coloration of t. The set Wcτ(X) of colored terms consists of all pairs ⟨t,αt⟩. Hypersubstitutions are maps which assign to each operation symbol a term with the same arity. If M is a monoid of hypersubstitutions then any sequence ρ=(σ1,σ2,…) is a mapping ρ:N→M, called a multi-hypersubstitution over M. An identity t≈s, satisfied in a variety V is an M-multi-hyperidentity if its images ρ[t≈s] are also satisfied in V for all ρ∈M. A variety V is M-multi-solid, if all its identities are M−multi-hyperidentities. We prove a series of inclusions and equations concerning M-multi-solid varieties. Finally we give an automata realization of multi-hypersubstitutions and colored terms. |
format |
Article |
author |
Shtrakov, S. |
spellingShingle |
Shtrakov, S. Multi-solid varieties and Mh-transducers Algebra and Discrete Mathematics |
author_facet |
Shtrakov, S. |
author_sort |
Shtrakov, S. |
title |
Multi-solid varieties and Mh-transducers |
title_short |
Multi-solid varieties and Mh-transducers |
title_full |
Multi-solid varieties and Mh-transducers |
title_fullStr |
Multi-solid varieties and Mh-transducers |
title_full_unstemmed |
Multi-solid varieties and Mh-transducers |
title_sort |
multi-solid varieties and mh-transducers |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152366 |
citation_txt |
Multi-solid varieties and Mh-transducers / S. Shtrakov
// Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 3. — С. 113–131. — Бібліогр.: 10 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT shtrakovs multisolidvarietiesandmhtransducers |
first_indexed |
2023-05-20T17:38:10Z |
last_indexed |
2023-05-20T17:38:10Z |
_version_ |
1796153742272233472 |