Exponent matrices and topological equivalence of maps
Conjugate classes of continuous maps of the interval [0,1] into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of (0,1)-exponent matrices of special form is const...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152381 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Exponent matrices and topological equivalence of maps / V. Fedorenko, V. Kirichenko, M. Plakhotnyk // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 45–58. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Conjugate classes of continuous maps of the interval [0,1] into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of (0,1)-exponent matrices of special form is constructed. Easy way of finding the quiver of the map in terms of the set of its extrema is found. |
---|