Exponent matrices and topological equivalence of maps

Conjugate classes of continuous maps of the interval [0,1] into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of (0,1)-exponent matrices of special form is const...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Fedorenko, V., Kirichenko, V., Plakhotnyk, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2007
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152381
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Exponent matrices and topological equivalence of maps / V. Fedorenko, V. Kirichenko, M. Plakhotnyk // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 45–58. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Conjugate classes of continuous maps of the interval [0,1] into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of (0,1)-exponent matrices of special form is constructed. Easy way of finding the quiver of the map in terms of the set of its extrema is found.