Serial piecewise domains
A ring A is called a piecewise domain with respect to the complete set of idempotents {e1,e2,…,em} if every nonzero homomorphism eiA→ejA is a monomorphism. In this paper we study the rings for which conditions of being piecewise domain and being hereditary (or semihereditary) rings are equivale...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/152382 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Serial piecewise domains / N. Gubareni, M. Khibina // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 59–72. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152382 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1523822019-06-11T01:25:28Z Serial piecewise domains Gubareni, N. Khibina, M. A ring A is called a piecewise domain with respect to the complete set of idempotents {e1,e2,…,em} if every nonzero homomorphism eiA→ejA is a monomorphism. In this paper we study the rings for which conditions of being piecewise domain and being hereditary (or semihereditary) rings are equivalent. We prove that a serial right Noetherian ring is a piecewise domain if and only if it is right hereditary. And we prove that a serial ring with right Noetherian diagonal is a piecewise domain if and only if it is semihereditary. 2007 Article Serial piecewise domains / N. Gubareni, M. Khibina // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 59–72. — Бібліогр.: 25 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:16P40, 16G10 http://dspace.nbuv.gov.ua/handle/123456789/152382 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A ring A is called a piecewise domain with respect to the complete set of idempotents {e1,e2,…,em} if every nonzero homomorphism eiA→ejA is a monomorphism. In this paper we study the rings for which conditions of being piecewise domain and being hereditary (or semihereditary) rings are equivalent. We prove that a serial right Noetherian ring is a piecewise domain if and only if it is right hereditary. And we prove that a serial ring with right Noetherian diagonal is a piecewise domain if and only if it is semihereditary. |
format |
Article |
author |
Gubareni, N. Khibina, M. |
spellingShingle |
Gubareni, N. Khibina, M. Serial piecewise domains Algebra and Discrete Mathematics |
author_facet |
Gubareni, N. Khibina, M. |
author_sort |
Gubareni, N. |
title |
Serial piecewise domains |
title_short |
Serial piecewise domains |
title_full |
Serial piecewise domains |
title_fullStr |
Serial piecewise domains |
title_full_unstemmed |
Serial piecewise domains |
title_sort |
serial piecewise domains |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152382 |
citation_txt |
Serial piecewise domains / N. Gubareni, M. Khibina // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 59–72. — Бібліогр.: 25 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT gubarenin serialpiecewisedomains AT khibinam serialpiecewisedomains |
first_indexed |
2023-05-20T17:38:12Z |
last_indexed |
2023-05-20T17:38:12Z |
_version_ |
1796153743969878016 |