Serial piecewise domains

A ring A is called a piecewise domain with respect to the complete set of idempotents {e1,e2,…,em} if every nonzero homomorphism eiA→ejA is a monomorphism. In this paper we study the rings for which conditions of being piecewise domain and being hereditary (or semihereditary) rings are equivale...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Gubareni, N., Khibina, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2007
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152382
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Serial piecewise domains / N. Gubareni, M. Khibina // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 59–72. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152382
record_format dspace
spelling irk-123456789-1523822019-06-11T01:25:28Z Serial piecewise domains Gubareni, N. Khibina, M. A ring A is called a piecewise domain with respect to the complete set of idempotents {e1,e2,…,em} if every nonzero homomorphism eiA→ejA is a monomorphism. In this paper we study the rings for which conditions of being piecewise domain and being hereditary (or semihereditary) rings are equivalent. We prove that a serial right Noetherian ring is a piecewise domain if and only if it is right hereditary. And we prove that a serial ring with right Noetherian diagonal is a piecewise domain if and only if it is semihereditary. 2007 Article Serial piecewise domains / N. Gubareni, M. Khibina // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 59–72. — Бібліогр.: 25 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:16P40, 16G10 http://dspace.nbuv.gov.ua/handle/123456789/152382 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A ring A is called a piecewise domain with respect to the complete set of idempotents {e1,e2,…,em} if every nonzero homomorphism eiA→ejA is a monomorphism. In this paper we study the rings for which conditions of being piecewise domain and being hereditary (or semihereditary) rings are equivalent. We prove that a serial right Noetherian ring is a piecewise domain if and only if it is right hereditary. And we prove that a serial ring with right Noetherian diagonal is a piecewise domain if and only if it is semihereditary.
format Article
author Gubareni, N.
Khibina, M.
spellingShingle Gubareni, N.
Khibina, M.
Serial piecewise domains
Algebra and Discrete Mathematics
author_facet Gubareni, N.
Khibina, M.
author_sort Gubareni, N.
title Serial piecewise domains
title_short Serial piecewise domains
title_full Serial piecewise domains
title_fullStr Serial piecewise domains
title_full_unstemmed Serial piecewise domains
title_sort serial piecewise domains
publisher Інститут прикладної математики і механіки НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/152382
citation_txt Serial piecewise domains / N. Gubareni, M. Khibina // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 59–72. — Бібліогр.: 25 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT gubarenin serialpiecewisedomains
AT khibinam serialpiecewisedomains
first_indexed 2023-05-20T17:38:12Z
last_indexed 2023-05-20T17:38:12Z
_version_ 1796153743969878016