On quantales of preradical Bland filters and differential preradical filters

We prove that the set of all Bland preradical filters over an arbitrary differential ring form a quantale with respect to meets where the role of multiplication is played by the usual Gabriel pro-duct of filters. A subset of a differential pretorsion theory is a subquantale of this quantale.

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Melnyk, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2007
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152386
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On quantales of preradical Bland filters and differential preradical filters / I. Melnyk // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 108–122. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152386
record_format dspace
spelling irk-123456789-1523862019-06-11T01:25:38Z On quantales of preradical Bland filters and differential preradical filters Melnyk, I. We prove that the set of all Bland preradical filters over an arbitrary differential ring form a quantale with respect to meets where the role of multiplication is played by the usual Gabriel pro-duct of filters. A subset of a differential pretorsion theory is a subquantale of this quantale. 2007 Article On quantales of preradical Bland filters and differential preradical filters / I. Melnyk // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 108–122. — Бібліогр.: 16 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:20F05, 20E05, 57M07. http://dspace.nbuv.gov.ua/handle/123456789/152386 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We prove that the set of all Bland preradical filters over an arbitrary differential ring form a quantale with respect to meets where the role of multiplication is played by the usual Gabriel pro-duct of filters. A subset of a differential pretorsion theory is a subquantale of this quantale.
format Article
author Melnyk, I.
spellingShingle Melnyk, I.
On quantales of preradical Bland filters and differential preradical filters
Algebra and Discrete Mathematics
author_facet Melnyk, I.
author_sort Melnyk, I.
title On quantales of preradical Bland filters and differential preradical filters
title_short On quantales of preradical Bland filters and differential preradical filters
title_full On quantales of preradical Bland filters and differential preradical filters
title_fullStr On quantales of preradical Bland filters and differential preradical filters
title_full_unstemmed On quantales of preradical Bland filters and differential preradical filters
title_sort on quantales of preradical bland filters and differential preradical filters
publisher Інститут прикладної математики і механіки НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/152386
citation_txt On quantales of preradical Bland filters and differential preradical filters / I. Melnyk // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 108–122. — Бібліогр.: 16 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT melnyki onquantalesofpreradicalblandfiltersanddifferentialpreradicalfilters
first_indexed 2023-05-20T17:38:13Z
last_indexed 2023-05-20T17:38:13Z
_version_ 1796153744389308416