Computational analysis of microarray gene expression profiles of lung cancer

Aim. The article presents the researches on the optimization of the DNA microarray data processing, which is aimed at improving the quality of object clustering. Methods. Data preprocessing was performed with program R using Bioconductor package. Modelling the clustering process was made in the soft...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Babichev, S.A., Kornelyuk, A.I., Lytvynenko, V.I., Osypenko, V.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2016
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152773
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Computational analysis of microarray gene expression profiles of lung cancer / S.A. Babichev, A.I. Kornelyuk, V.I. Lytvynenko, V.V. Osypenko // Вiopolymers and Cell. — 2016. — Т. 32, № 1. — С. 70-79. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Aim. The article presents the researches on the optimization of the DNA microarray data processing, which is aimed at improving the quality of object clustering. Methods. Data preprocessing was performed with program R using Bioconductor package. Modelling the clustering process was made in the software environment KNIME using the program WEKA functions. Results. The data preprocessing is shown to be optimal while using such techniques as the background correction rma method, quantile normalization, mas PM correction and summarization by mas method. The simulation results have demonstrated a high effectiveness of the clustering algorithm Sota for this category of data. Conclusion. The results of the research have shown that improving the quality of biological object clustering is possible by means of hybridization and optimization of the methods and algorithms at different stages of data processing.