On the flag geometry of simple group of Lie type and multivariate cryptography

We propose some multivariate cryptosystems based on finite BN-pair G defined over the fields Fq. We convert the adjacency graph for maximal flags of the geometry of group G into a finite Tits automaton by special colouring of arrows and treat the largest Schubert cell Sch isomorphic to vector space...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Ustimenko, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2015
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152794
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the flag geometry of simple group of Lie type and multivariate cryptography / V. Ustimenko // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 130-144. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152794
record_format dspace
spelling irk-123456789-1527942019-06-13T01:25:30Z On the flag geometry of simple group of Lie type and multivariate cryptography Ustimenko, V. We propose some multivariate cryptosystems based on finite BN-pair G defined over the fields Fq. We convert the adjacency graph for maximal flags of the geometry of group G into a finite Tits automaton by special colouring of arrows and treat the largest Schubert cell Sch isomorphic to vector space over Fq on this variety as a totality of possible initial states and a totality of accepting states at a time. The computation (encryption map) corresponds to some walk in the graph with the starting and ending points in Sch. To make algorithms fast we will use the embedding of geometry for G into Borel subalgebra of corresponding Lie algebra. We also consider the notion of symbolic Tits automata. The symbolic initial state is a string of variables tα∈Fq, where roots α are listed according Bruhat's order, choice of label will be governed by special multivariate expressions in variables tα, where α is a simple root. Deformations of such nonlinear map by two special elements of affine group acting on the plainspace can produce a computable in polynomial time nonlinear transformation. The information on adjacency graph, list of multivariate governing functions will define invertible decomposition of encryption multivariate function. It forms a private key which allows the owner of a public key to decrypt a ciphertext formed by a public user. We also estimate a polynomial time needed for the generation of a public rule. 2015 Article On the flag geometry of simple group of Lie type and multivariate cryptography / V. Ustimenko // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 130-144. — Бібліогр.: 18 назв. — англ. 1726-3255 http://dspace.nbuv.gov.ua/handle/123456789/152794 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We propose some multivariate cryptosystems based on finite BN-pair G defined over the fields Fq. We convert the adjacency graph for maximal flags of the geometry of group G into a finite Tits automaton by special colouring of arrows and treat the largest Schubert cell Sch isomorphic to vector space over Fq on this variety as a totality of possible initial states and a totality of accepting states at a time. The computation (encryption map) corresponds to some walk in the graph with the starting and ending points in Sch. To make algorithms fast we will use the embedding of geometry for G into Borel subalgebra of corresponding Lie algebra. We also consider the notion of symbolic Tits automata. The symbolic initial state is a string of variables tα∈Fq, where roots α are listed according Bruhat's order, choice of label will be governed by special multivariate expressions in variables tα, where α is a simple root. Deformations of such nonlinear map by two special elements of affine group acting on the plainspace can produce a computable in polynomial time nonlinear transformation. The information on adjacency graph, list of multivariate governing functions will define invertible decomposition of encryption multivariate function. It forms a private key which allows the owner of a public key to decrypt a ciphertext formed by a public user. We also estimate a polynomial time needed for the generation of a public rule.
format Article
author Ustimenko, V.
spellingShingle Ustimenko, V.
On the flag geometry of simple group of Lie type and multivariate cryptography
Algebra and Discrete Mathematics
author_facet Ustimenko, V.
author_sort Ustimenko, V.
title On the flag geometry of simple group of Lie type and multivariate cryptography
title_short On the flag geometry of simple group of Lie type and multivariate cryptography
title_full On the flag geometry of simple group of Lie type and multivariate cryptography
title_fullStr On the flag geometry of simple group of Lie type and multivariate cryptography
title_full_unstemmed On the flag geometry of simple group of Lie type and multivariate cryptography
title_sort on the flag geometry of simple group of lie type and multivariate cryptography
publisher Інститут прикладної математики і механіки НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/152794
citation_txt On the flag geometry of simple group of Lie type and multivariate cryptography / V. Ustimenko // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 130-144. — Бібліогр.: 18 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT ustimenkov ontheflaggeometryofsimplegroupoflietypeandmultivariatecryptography
first_indexed 2023-05-20T17:38:27Z
last_indexed 2023-05-20T17:38:27Z
_version_ 1796153757681057792