Self-organization of adatom adsorption structure at interaction with tip of dynamic force microscope

The formation of an adatom adsorption structure in dynamic force microscopy experiment is shown as a result of the spontaneous appearance of shear strain caused by external supercritical heating. This transition is described by the Kelvin-Voigt equation for a viscoelastic medium, the relaxation Land...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Khomenko, A.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2014
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152897
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Self-organization of adatom adsorption structure at interaction with tip of dynamic force microscope / A.V. Khomenko // Condensed Matter Physics. — 2014. — Т. 17, № 3. — С. 33401: 1–10 — Бібліогр.: 50 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The formation of an adatom adsorption structure in dynamic force microscopy experiment is shown as a result of the spontaneous appearance of shear strain caused by external supercritical heating. This transition is described by the Kelvin-Voigt equation for a viscoelastic medium, the relaxation Landau-Khalatnikov equation for shear stress, and the relaxation equation for temperature. It is shown that these equations formally coincide with the synergetic Lorenz system, where the shear strain acts as the order parameter, the conjugate field is reduced to the stress, and the temperature is the control parameter. Within the adiabatic approximation, the steady-state values of these quantities are found. Taking into account the sample shear modulus vs strain dependence, the formation of the adatom adsorption configuration is described as the first-order transition. The critical temperature of the tip linearly increases with the growth of the effective value of the sample shear modulus and decreases with the growth of its typical value.