Comparative analysis of nuclear localization signal (NLS) prediction methods

Aim. Comparative analysis of six state-of-the-art nuclear localization signal (NLS) prediction methods (PSORT II, NucPred, cNLSMapper, NLStradamus, NucImport and seqNLS). Methods. Each program was tested for correct predictions using a dataset of 155 experimentally determined NLSs and for false-posi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Lisitsyna, O.M., Seplyarskiy, V.B., Sheval, E.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2017
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152918
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Comparative analysis of nuclear localization signal (NLS) prediction methods / O.M. Lisitsyna, V.B. Seplyarskiy, E.V. Sheval // Вiopolymers and Cell. — 2017. — Т. 33, № 2. — С. 147-154. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Aim. Comparative analysis of six state-of-the-art nuclear localization signal (NLS) prediction methods (PSORT II, NucPred, cNLSMapper, NLStradamus, NucImport and seqNLS). Methods. Each program was tested for correct predictions using a dataset of 155 experimentally determined NLSs and for false-positives using a dataset of 155 transmembrane proteins, which putatively lack NLS. Results. The most suitable NLS predictors wer fond to be NucPred, NLStradamus and seqNLS; these programs provide the maximum rate of correct to wrong predictions among the tested programs. However, the best results obtained by these programs were only ~ 45 % of the correct predictions. Conclusion. The identification of novel NLSs by predictors still requires experimental verification.