On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field

The group UJ₂(Fq) of unitriangular automorphisms of the polynomial ring in two variables over a finite field Fq, q = pm, is studied. We proved that UJ₂(Fq) is isomorphic to a standard wreath product of elementary Abelian p-groups. Using wreath product representation we proved that the nilpotency cla...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Leshchenko, Yu., Sushchansky, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2014
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152947
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the group of unitriangular automorphisms of the polynomial ring in two variables over a finite field / Yu. Leshchenko, V. Sushchansky // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 288–297. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The group UJ₂(Fq) of unitriangular automorphisms of the polynomial ring in two variables over a finite field Fq, q = pm, is studied. We proved that UJ₂(Fq) is isomorphic to a standard wreath product of elementary Abelian p-groups. Using wreath product representation we proved that the nilpotency class of UJ₂(Fq) is c = m(p − 1) + 1 and the (k + 1)th term of the lower central series of this group coincides with the (c − k)th term of its upper central series. Also we showed that UJn(Fq) is not nilpotent if n ≥ 3.