Protein partners of the eEF1Bβ subunit of the translation elongation complex eEF1B in the nuclear fraction of human lung carcinoma cells

Aim. To identify novel protein partners of translation factor eEF1Bβ in nucleus of human lung carcinoma cells. Methods. Protein partners of eEF1Bβ in the nuclear fraction of A549 cells were identified by co-immunoprecipitation (co-IP) combined with liquid chromatography-tandem mass spectrometry (LC-...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Kapustian, L.M., Dadlez, M., Negrutskii, B.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2017
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152980
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Protein partners of the eEF1Bβ subunit of the translation elongation complex eEF1B in the nuclear fraction of human lung carcinoma cells / L.M. Kapustian, M. Dadlez, B.S. Negrutskii // Вiopolymers and Cell. — 2017. — Т. 33, № 4. — С. 243-255. — Бібліогр.: 72 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Aim. To identify novel protein partners of translation factor eEF1Bβ in nucleus of human lung carcinoma cells. Methods. Protein partners of eEF1Bβ in the nuclear fraction of A549 cells were identified by co-immunoprecipitation (co-IP) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Specific protein partners of eEF1Bβ were further selected by using the results of previously published global, quantitative and dynamic mapping of protein subcellu-lar localization with help of “Mapofthecell” program. Results. 104 high-scored proteins interact-ing with eEF1Bβ in the nuclear fraction of A549 cells have been identified by mass-spectrometry. Among these proteins, 9 partners of eEF1Bβ were confirmed by the co-fractionation approach. Functional analysis of the partners has divided them on the pro-oncogenic (lung-cancer related) and neutral/anti-oncogenic moieties. These two groups are estimated to be spatially separated in human cancer cells. Conclusions. The position of eEF1Bβ as a link between the oncogenic and neutral/tumor-suppressor moieties of its protein partners in nucleus of lung cancer cells is sug-gested. Deciphering of a possible role of the eEF1Bβ distribution between the pro-cancer or anti-cancer communities of its protein partners can be a subject of further research.