Objective clustering inductive technology of gene expression profiles based on sota clustering algorithm

Aim. Development of an inductive technology of objective clustering of gene expression profiles based on a self-organizing SOTA clustering algorithm. Methods. Inductive methods of complex system analysis were used to implement the inductive technology of objective clustering of gene expression profi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Babichev, S.A., Gozhyj, A., Kornelyuk, A.I., Lytvynenko, V.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2017
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153098
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Objective clustering inductive technology of gene expression profiles based on sota clustering algorithm / S.A. Babichev, A. Gozhyj, A.I. Kornelyuk, V.I. Lytvynenko // Вiopolymers and Cell. — 2017. — Т. 33, № 5. — С. 379-392. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Aim. Development of an inductive technology of objective clustering of gene expression profiles based on a self-organizing SOTA clustering algorithm. Methods. Inductive methods of complex system analysis were used to implement the inductive technology of objective clustering of gene expression profiles. The optimal parameters of clustering algorithm were estimated using internal clustering quality criteria, external criteria and complex balance criteria. Results. Here we present the architecture of the inductive technology of objective clustering based on SOTA clustering algorithm and step-by-step procedure of its implementation. Charts of the internal, external and complex balance criteria versus the algorithm parameters were obtained during simulation. This allowed us to determine the optimal parameters of the algorithm. Conclusion. We have shown a high efficiency of the proposed technology. In case of analysis of gene expression profiles, this approach allows to implement a step-by-step cluster-bicluster technology of data grouping at an early stage of gene regulatory network reconstruction.