Densities, submeasures and partitions of groups
In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition G=A₁ ∪ ⋯ ∪ An of a group G there is a cell Ai of the partition such that G = FAiA⁻¹i for some set F ⊂ G of cardinality |F |≤ n? In this paper we survey several partial solutions of this pro...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2014
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/153328 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Densities, submeasures and partitions of groups / T. Banakh, I. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 193–221. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition G=A₁ ∪ ⋯ ∪ An of a group G there is a cell Ai of the partition such that G = FAiA⁻¹i for some set F ⊂ G of cardinality |F |≤ n? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition G = A₁ ∪ ⋯ ∪ An of a group G there are cells Ai, Aj of the partition such that G = FAjA⁻¹j for some finite set F ⊂ G of cardinality |F| ≤ max₀<k≤n ∑ⁿ⁻kp₌₀kp ≤ n!; G = F ⋅ ⋃x∈ExAiA⁻¹ix⁻¹ for some finite sets F, E ⊂ G with |F| ≤ n; G = FAiA⁻¹iAi for some finite set F ⊂ G of cardinality |F| ≤ n; the set (AiA⁻¹i)⁴ⁿ⁻¹ is a subgroup of index ≤ n in G. The last three statements are derived from the corresponding density results. |
---|