Densities, submeasures and partitions of groups

In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition G=A₁ ∪ ⋯ ∪ An of a group G there is a cell Ai of the partition such that G = FAiA⁻¹i for some set F ⊂ G of cardinality |F |≤ n? In this paper we survey several partial solutions of this pro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Banakh, T., Protasov, I., Slobodianiuk, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2014
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153328
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Densities, submeasures and partitions of groups / T. Banakh, I. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 193–221. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153328
record_format dspace
spelling irk-123456789-1533282019-06-15T01:30:46Z Densities, submeasures and partitions of groups Banakh, T. Protasov, I. Slobodianiuk, S. In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition G=A₁ ∪ ⋯ ∪ An of a group G there is a cell Ai of the partition such that G = FAiA⁻¹i for some set F ⊂ G of cardinality |F |≤ n? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition G = A₁ ∪ ⋯ ∪ An of a group G there are cells Ai, Aj of the partition such that G = FAjA⁻¹j for some finite set F ⊂ G of cardinality |F| ≤ max₀<k≤n ∑ⁿ⁻kp₌₀kp ≤ n!; G = F ⋅ ⋃x∈ExAiA⁻¹ix⁻¹ for some finite sets F, E ⊂ G with |F| ≤ n; G = FAiA⁻¹iAi for some finite set F ⊂ G of cardinality |F| ≤ n; the set (AiA⁻¹i)⁴ⁿ⁻¹ is a subgroup of index ≤ n in G. The last three statements are derived from the corresponding density results. 2014 Article Densities, submeasures and partitions of groups / T. Banakh, I. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 193–221. — Бібліогр.: 25 назв. — англ. 1726-3255 2010 MSC:05E15, 05D10, 28C10. http://dspace.nbuv.gov.ua/handle/123456789/153328 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition G=A₁ ∪ ⋯ ∪ An of a group G there is a cell Ai of the partition such that G = FAiA⁻¹i for some set F ⊂ G of cardinality |F |≤ n? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition G = A₁ ∪ ⋯ ∪ An of a group G there are cells Ai, Aj of the partition such that G = FAjA⁻¹j for some finite set F ⊂ G of cardinality |F| ≤ max₀<k≤n ∑ⁿ⁻kp₌₀kp ≤ n!; G = F ⋅ ⋃x∈ExAiA⁻¹ix⁻¹ for some finite sets F, E ⊂ G with |F| ≤ n; G = FAiA⁻¹iAi for some finite set F ⊂ G of cardinality |F| ≤ n; the set (AiA⁻¹i)⁴ⁿ⁻¹ is a subgroup of index ≤ n in G. The last three statements are derived from the corresponding density results.
format Article
author Banakh, T.
Protasov, I.
Slobodianiuk, S.
spellingShingle Banakh, T.
Protasov, I.
Slobodianiuk, S.
Densities, submeasures and partitions of groups
Algebra and Discrete Mathematics
author_facet Banakh, T.
Protasov, I.
Slobodianiuk, S.
author_sort Banakh, T.
title Densities, submeasures and partitions of groups
title_short Densities, submeasures and partitions of groups
title_full Densities, submeasures and partitions of groups
title_fullStr Densities, submeasures and partitions of groups
title_full_unstemmed Densities, submeasures and partitions of groups
title_sort densities, submeasures and partitions of groups
publisher Інститут прикладної математики і механіки НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/153328
citation_txt Densities, submeasures and partitions of groups / T. Banakh, I. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 193–221. — Бібліогр.: 25 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT banakht densitiessubmeasuresandpartitionsofgroups
AT protasovi densitiessubmeasuresandpartitionsofgroups
AT slobodianiuks densitiessubmeasuresandpartitionsofgroups
first_indexed 2023-05-20T17:38:28Z
last_indexed 2023-05-20T17:38:28Z
_version_ 1796153749067005952