A geometrical interpretation of infinite wreath powers
A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal clo...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2014
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/153333 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A geometrical interpretation of infinite wreath powers / V.H. Mikaelian // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 2. — С. 250–267. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-153333 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1533332019-06-15T01:26:59Z A geometrical interpretation of infinite wreath powers Mikaelian, V.H. A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal closure of one of the generators is locally soluble. 2014 Article A geometrical interpretation of infinite wreath powers / V.H. Mikaelian // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 2. — С. 250–267. — Бібліогр.: 27 назв. — англ. 1726-3255 2010 MSC:20E08, 20E22, 20F16. http://dspace.nbuv.gov.ua/handle/123456789/153333 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal closure of one of the generators is locally soluble. |
format |
Article |
author |
Mikaelian, V.H. |
spellingShingle |
Mikaelian, V.H. A geometrical interpretation of infinite wreath powers Algebra and Discrete Mathematics |
author_facet |
Mikaelian, V.H. |
author_sort |
Mikaelian, V.H. |
title |
A geometrical interpretation of infinite wreath powers |
title_short |
A geometrical interpretation of infinite wreath powers |
title_full |
A geometrical interpretation of infinite wreath powers |
title_fullStr |
A geometrical interpretation of infinite wreath powers |
title_full_unstemmed |
A geometrical interpretation of infinite wreath powers |
title_sort |
geometrical interpretation of infinite wreath powers |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/153333 |
citation_txt |
A geometrical interpretation of infinite wreath powers / V.H. Mikaelian // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 2. — С. 250–267. — Бібліогр.: 27 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT mikaelianvh ageometricalinterpretationofinfinitewreathpowers AT mikaelianvh geometricalinterpretationofinfinitewreathpowers |
first_indexed |
2023-05-20T17:39:06Z |
last_indexed |
2023-05-20T17:39:06Z |
_version_ |
1796153768303132672 |