2025-02-23T15:15:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-153333%22&qt=morelikethis&rows=5
2025-02-23T15:15:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-153333%22&qt=morelikethis&rows=5
2025-02-23T15:15:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T15:15:18-05:00 DEBUG: Deserialized SOLR response

A geometrical interpretation of infinite wreath powers

A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal clo...

Full description

Saved in:
Bibliographic Details
Main Author: Mikaelian, V.H.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2014
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/153333
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-153333
record_format dspace
spelling irk-123456789-1533332019-06-15T01:26:59Z A geometrical interpretation of infinite wreath powers Mikaelian, V.H. A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal closure of one of the generators is locally soluble. 2014 Article A geometrical interpretation of infinite wreath powers / V.H. Mikaelian // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 2. — С. 250–267. — Бібліогр.: 27 назв. — англ. 1726-3255 2010 MSC:20E08, 20E22, 20F16. http://dspace.nbuv.gov.ua/handle/123456789/153333 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal closure of one of the generators is locally soluble.
format Article
author Mikaelian, V.H.
spellingShingle Mikaelian, V.H.
A geometrical interpretation of infinite wreath powers
Algebra and Discrete Mathematics
author_facet Mikaelian, V.H.
author_sort Mikaelian, V.H.
title A geometrical interpretation of infinite wreath powers
title_short A geometrical interpretation of infinite wreath powers
title_full A geometrical interpretation of infinite wreath powers
title_fullStr A geometrical interpretation of infinite wreath powers
title_full_unstemmed A geometrical interpretation of infinite wreath powers
title_sort geometrical interpretation of infinite wreath powers
publisher Інститут прикладної математики і механіки НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/153333
citation_txt A geometrical interpretation of infinite wreath powers / V.H. Mikaelian // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 2. — С. 250–267. — Бібліогр.: 27 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT mikaelianvh ageometricalinterpretationofinfinitewreathpowers
AT mikaelianvh geometricalinterpretationofinfinitewreathpowers
first_indexed 2023-05-20T17:39:06Z
last_indexed 2023-05-20T17:39:06Z
_version_ 1796153768303132672