A geometrical interpretation of infinite wreath powers

A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal clo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Mikaelian, V.H.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2014
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153333
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A geometrical interpretation of infinite wreath powers / V.H. Mikaelian // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 2. — С. 250–267. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153333
record_format dspace
spelling irk-123456789-1533332019-06-15T01:26:59Z A geometrical interpretation of infinite wreath powers Mikaelian, V.H. A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal closure of one of the generators is locally soluble. 2014 Article A geometrical interpretation of infinite wreath powers / V.H. Mikaelian // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 2. — С. 250–267. — Бібліогр.: 27 назв. — англ. 1726-3255 2010 MSC:20E08, 20E22, 20F16. http://dspace.nbuv.gov.ua/handle/123456789/153333 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A geometrical construction based on an infinite tree graph is suggested to illustrate the concept of infinite wreath powers of P.Hall. We use techniques based on infinite wreath powers and on this geometrical constriction to build a 2-generator group which is not soluble, but in which the normal closure of one of the generators is locally soluble.
format Article
author Mikaelian, V.H.
spellingShingle Mikaelian, V.H.
A geometrical interpretation of infinite wreath powers
Algebra and Discrete Mathematics
author_facet Mikaelian, V.H.
author_sort Mikaelian, V.H.
title A geometrical interpretation of infinite wreath powers
title_short A geometrical interpretation of infinite wreath powers
title_full A geometrical interpretation of infinite wreath powers
title_fullStr A geometrical interpretation of infinite wreath powers
title_full_unstemmed A geometrical interpretation of infinite wreath powers
title_sort geometrical interpretation of infinite wreath powers
publisher Інститут прикладної математики і механіки НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/153333
citation_txt A geometrical interpretation of infinite wreath powers / V.H. Mikaelian // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 2. — С. 250–267. — Бібліогр.: 27 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT mikaelianvh ageometricalinterpretationofinfinitewreathpowers
AT mikaelianvh geometricalinterpretationofinfinitewreathpowers
first_indexed 2023-05-20T17:39:06Z
last_indexed 2023-05-20T17:39:06Z
_version_ 1796153768303132672