Dense subgroups in the group of interval exchange transformations

The paper concerns the characterization of the group IET of interval exchange transformations (iet). We investigate a class of rational subgroups of IET. These are subgroups consisting of iet transformations defined by partitions with rational endpoints. We propose a characterization of rational sub...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Bier, A., Sushchanskyy, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2014
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153335
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dense subgroups in the group of interval exchange transformations / A. Bier, V. Sushchanskyy // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 232–247. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153335
record_format dspace
spelling irk-123456789-1533352019-06-16T01:25:38Z Dense subgroups in the group of interval exchange transformations Bier, A. Sushchanskyy, V. The paper concerns the characterization of the group IET of interval exchange transformations (iet). We investigate a class of rational subgroups of IET. These are subgroups consisting of iet transformations defined by partitions with rational endpoints. We propose a characterization of rational subgroups in terms of infinite supernatural numbers and prove that every such subgroup is dense in IET. We also discuss the properties of these groups. 2014 Article Dense subgroups in the group of interval exchange transformations / A. Bier, V. Sushchanskyy // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 232–247. — Бібліогр.: 28 назв. — англ. 1726-3255 2010 MSC:37B05, 28D05, 37A05. http://dspace.nbuv.gov.ua/handle/123456789/153335 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The paper concerns the characterization of the group IET of interval exchange transformations (iet). We investigate a class of rational subgroups of IET. These are subgroups consisting of iet transformations defined by partitions with rational endpoints. We propose a characterization of rational subgroups in terms of infinite supernatural numbers and prove that every such subgroup is dense in IET. We also discuss the properties of these groups.
format Article
author Bier, A.
Sushchanskyy, V.
spellingShingle Bier, A.
Sushchanskyy, V.
Dense subgroups in the group of interval exchange transformations
Algebra and Discrete Mathematics
author_facet Bier, A.
Sushchanskyy, V.
author_sort Bier, A.
title Dense subgroups in the group of interval exchange transformations
title_short Dense subgroups in the group of interval exchange transformations
title_full Dense subgroups in the group of interval exchange transformations
title_fullStr Dense subgroups in the group of interval exchange transformations
title_full_unstemmed Dense subgroups in the group of interval exchange transformations
title_sort dense subgroups in the group of interval exchange transformations
publisher Інститут прикладної математики і механіки НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/153335
citation_txt Dense subgroups in the group of interval exchange transformations / A. Bier, V. Sushchanskyy // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 232–247. — Бібліогр.: 28 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT biera densesubgroupsinthegroupofintervalexchangetransformations
AT sushchanskyyv densesubgroupsinthegroupofintervalexchangetransformations
first_indexed 2023-05-20T17:38:29Z
last_indexed 2023-05-20T17:38:29Z
_version_ 1796153749278818304