On a factorization of an iterated wreath product of permutation groups

We show that if each group of permutations (Gi, Mi), i ∈ N has a factorization then their infinite iterated wreath product ≀i₌₁∞Gi also has a factorization. We discuss some properties of this factorization and give examples.

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Bajorska, B., Sushchansky, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2014
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153343
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On a factorization of an iterated wreath product of permutation groups / B. Bajorska, V. Sushchansky // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 14–26. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153343
record_format dspace
spelling irk-123456789-1533432019-06-15T01:26:26Z On a factorization of an iterated wreath product of permutation groups Bajorska, B. Sushchansky, V. We show that if each group of permutations (Gi, Mi), i ∈ N has a factorization then their infinite iterated wreath product ≀i₌₁∞Gi also has a factorization. We discuss some properties of this factorization and give examples. 2014 Article On a factorization of an iterated wreath product of permutation groups / B. Bajorska, V. Sushchansky // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 14–26. — Бібліогр.: 12 назв. — англ. 1726-3255 2010 MSC:20E22, 20E18. http://dspace.nbuv.gov.ua/handle/123456789/153343 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We show that if each group of permutations (Gi, Mi), i ∈ N has a factorization then their infinite iterated wreath product ≀i₌₁∞Gi also has a factorization. We discuss some properties of this factorization and give examples.
format Article
author Bajorska, B.
Sushchansky, V.
spellingShingle Bajorska, B.
Sushchansky, V.
On a factorization of an iterated wreath product of permutation groups
Algebra and Discrete Mathematics
author_facet Bajorska, B.
Sushchansky, V.
author_sort Bajorska, B.
title On a factorization of an iterated wreath product of permutation groups
title_short On a factorization of an iterated wreath product of permutation groups
title_full On a factorization of an iterated wreath product of permutation groups
title_fullStr On a factorization of an iterated wreath product of permutation groups
title_full_unstemmed On a factorization of an iterated wreath product of permutation groups
title_sort on a factorization of an iterated wreath product of permutation groups
publisher Інститут прикладної математики і механіки НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/153343
citation_txt On a factorization of an iterated wreath product of permutation groups / B. Bajorska, V. Sushchansky // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 14–26. — Бібліогр.: 12 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT bajorskab onafactorizationofaniteratedwreathproductofpermutationgroups
AT sushchanskyv onafactorizationofaniteratedwreathproductofpermutationgroups
first_indexed 2023-05-20T17:38:30Z
last_indexed 2023-05-20T17:38:30Z
_version_ 1796153749804154880