On a factorization of an iterated wreath product of permutation groups
We show that if each group of permutations (Gi, Mi), i ∈ N has a factorization then their infinite iterated wreath product ≀i₌₁∞Gi also has a factorization. We discuss some properties of this factorization and give examples.
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2014
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/153343 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On a factorization of an iterated wreath product of permutation groups / B. Bajorska, V. Sushchansky // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 14–26. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-153343 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1533432019-06-15T01:26:26Z On a factorization of an iterated wreath product of permutation groups Bajorska, B. Sushchansky, V. We show that if each group of permutations (Gi, Mi), i ∈ N has a factorization then their infinite iterated wreath product ≀i₌₁∞Gi also has a factorization. We discuss some properties of this factorization and give examples. 2014 Article On a factorization of an iterated wreath product of permutation groups / B. Bajorska, V. Sushchansky // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 14–26. — Бібліогр.: 12 назв. — англ. 1726-3255 2010 MSC:20E22, 20E18. http://dspace.nbuv.gov.ua/handle/123456789/153343 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show that if each group of permutations (Gi, Mi), i ∈ N has a factorization then their infinite iterated wreath product ≀i₌₁∞Gi also has a factorization. We discuss some properties of this factorization and give examples. |
format |
Article |
author |
Bajorska, B. Sushchansky, V. |
spellingShingle |
Bajorska, B. Sushchansky, V. On a factorization of an iterated wreath product of permutation groups Algebra and Discrete Mathematics |
author_facet |
Bajorska, B. Sushchansky, V. |
author_sort |
Bajorska, B. |
title |
On a factorization of an iterated wreath product of permutation groups |
title_short |
On a factorization of an iterated wreath product of permutation groups |
title_full |
On a factorization of an iterated wreath product of permutation groups |
title_fullStr |
On a factorization of an iterated wreath product of permutation groups |
title_full_unstemmed |
On a factorization of an iterated wreath product of permutation groups |
title_sort |
on a factorization of an iterated wreath product of permutation groups |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/153343 |
citation_txt |
On a factorization of an iterated wreath product of permutation groups / B. Bajorska, V. Sushchansky // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 14–26. — Бібліогр.: 12 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT bajorskab onafactorizationofaniteratedwreathproductofpermutationgroups AT sushchanskyv onafactorizationofaniteratedwreathproductofpermutationgroups |
first_indexed |
2023-05-20T17:38:30Z |
last_indexed |
2023-05-20T17:38:30Z |
_version_ |
1796153749804154880 |