On a factorization of an iterated wreath product of permutation groups
We show that if each group of permutations (Gi, Mi), i ∈ N has a factorization then their infinite iterated wreath product ≀i₌₁∞Gi also has a factorization. We discuss some properties of this factorization and give examples.
Збережено в:
Дата: | 2014 |
---|---|
Автори: | Bajorska, B., Sushchansky, V. |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2014
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/153343 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On a factorization of an iterated wreath product of permutation groups / B. Bajorska, V. Sushchansky // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 14–26. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineСхожі ресурси
-
On a factorization of an iterated wreath product of permutation groups
за авторством: B. Bajorska, та інші
Опубліковано: (2014) -
On the Diameters of Commuting Graphs of Permutational Wreath Products
за авторством: Ju. Ju. Leshchenko
Опубліковано: (2014) -
Infinitely iterated wreath products of metric spaces
за авторством: Oliynyk, B.
Опубліковано: (2013) -
Infinitely iterated wreath products of metric spaces
за авторством: B. Oliynyk
Опубліковано: (2013) -
Conjugacy in finite state wreath powers of finite permutation groups
за авторством: Oliynyk, Andriy, та інші
Опубліковано: (2019)